把矩阵看作线性算子,那么可以由向量范数诱导出矩阵范数║A║ = max{║Ax║:║x║=1}= max{║Ax║/║x║: x≠0} ,它自动满足对向量范数的相容性║Ax║ ≤ ║A║║x║,并且可以由此证明║AB║ ≤ ║A║║B║。注:1.上述定义中可以用max代替sup是因为有限维空间的单位闭球是紧的(有限开覆盖定理),从而上面的连续函数可以取到最值。2.显然,单位矩阵的算子范数为1。常用的三种p-范数诱导出的矩阵范数是1-范数:║A║1 = max{ ∑|ai1|, ∑|ai2| ,…… ,∑|ain| } (列和范数,A每一列元素绝对值之和的最大值)(其中∑|ai1|第一列元素绝对值的和∑|ai1|=|a11|+|a21|+...+|an1|,其余类似);2-范数:║A║2 = A的最大奇异值 = ( max{ λi(A^H*A) } ) ^{1/2} (谱范数,即A'A特征值λi中最大者λ1的平方根,其中A^H为A的转置共轭矩阵);∞-范数:║A║∞ = max{ ∑|a1j|, ∑|a2j| ,..., ∑|amj| } (行和范数,A每一行元素绝对值之和的最大值)(其中为∑|a1j| 第一行元素绝对值的和,其余类似);其它的p-范数则没有很简单的表达式。对于p-范数而言,可以证明║A║p=║A^H║q,其中p和q是共轭指标。简单的情形可以直接验证:║A║1=║A^H║∞,║A║2=║A^H║2,一般情形则需要利用║A║p=max{y^H*A*x:║x║p=║y║q=1}。