造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

莲花水电站安全监测

2018/06/1984 作者:佚名
导读: 监测概况 莲花水电站大坝安全监测系统由东北勘测设计研究院设计。大、二坝内部观测仪器埋设和外部观测测点浇筑随坝体施工同步进行,从1993年开始,到1997年结束。大坝安全监测以变形、渗流为主,应力应变为辅;施工期和运行期监测兼顾。 监测项目 ⑴变形监测:包括大、二坝坝体表面水平、垂直位移;大坝坝体内部水平、垂直位移;砼面板板间缝、周边缝开合度及面板挠曲变形监测。⑵渗流

监测概况

莲花水电站大坝安全监测系统由东北勘测设计研究院设计。大、二坝内部观测仪器埋设和外部观测测点浇筑随坝体施工同步进行,从1993年开始,到1997年结束。大坝安全监测以变形、渗流为主,应力应变为辅;施工期和运行期监测兼顾。

监测项目

⑴变形监测:包括大、二坝坝体表面水平、垂直位移;大坝坝体内部水平、垂直位移;砼面板板间缝、周边缝开合度及面板挠曲变形监测。

⑵渗流监测:包括大坝坝体渗透压力;大、二坝渗流量和绕坝渗流监测。

⑶应力应变监测:包括大坝砼面板应力应变和温度监测。

监测系统布置

1、基点网

莲花电站水平位移监测基点网-边角网,由坝区内的13个点组成,采用T2002+DI2002全站仪按国家一等莲花水电站图片三角精度施测;垂直位移监测基点网-精密水准网,由坝下游区的26个点组成,采用NI002A精密水准仪和铟瓦水准尺按国家一等水准精度施测。电站大坝、二坝、溢洪道等建筑物的水平、垂直位移观测均以上述网作为基点网。

2、大、二坝监测系统布置

⑴大、二坝坝体表面变形监测

莲花大坝(混凝土面板堆石坝)在面板、防浪墙顶部、坝顶公路下游侧、马道及进厂公路上游侧平行于坝轴线布置五排总计52个水平位移永久测点;在坝下游坡观测室旁还有6个测点。二坝(粘土心墙砂砾石坝)在上游坡、防浪墙顶部、坝顶公路下游侧及马道处平行于坝轴线布置四排总计13个水平位移永久测点。坝体表面水平位移利用边角网做为工作基点,采用边角交会或边长交会法,应用T2002+DI2002按二等三角精度进行观测。坝体表面垂直位移永久测点与水平位移永久测点在同一测墩上。坝体表面垂直位移利用精密水准网做为工作基点,组成闭合或附合水准路线,应用NI002A精密水准仪和铟瓦水准尺按二等水准精度进行观测。

⑵大坝坝体内部变形监测

取大坝两个典型断面0+170桩号(最大坝高断面)和0+496桩号(地质条件复杂断面)做为大坝坝体内部水平、垂直位移的观测断面。在每个断面坝下游坡▽180m、▽192m和▽205m三个高程处布置6个内部变形观测室,室内布置水平位移和垂直位移测点总计各24个。水平位移和垂直位移测点同组布置,同一层测点以观测主堆石体位移为主,每层都在过渡料与垫层料之间布置一个测点,以此点位移代表面板位移,兼测面板挠度。水平位移观测采用引张线式水平位移计,垂直位移采用水管式沉降仪。观测室外设内外部联系测点6个,观测观测室自身位移,以便换算出坝体内部各测点的绝对位移。

⑶大坝面板板间缝、周边缝变形监测 莲花水电站图片

在靠近两岸坝肩部位的张性缝区域,各布置2支测缝计,观测面板张性缝的开度大小;在河床部位的压性缝区域,布置1支测缝计,观测面板压性缝的闭合度大小。为观测周边缝的三向位移,在河床及两岸的周边缝共布置9组三向测缝计,观测垂直于周边缝的开合、平行于周边缝的滑移及垂直于面板的沉降。

⑷大、二坝渗流监测

在大坝最大坝高断面(0+170桩号)建基面靠近上游趾板帷幕后布置4支渗压计,用来观测坝基渗透压力。在二坝0+072剖面,布置12支钢弦式渗压计,用以观测坝体浸润线。

在大坝下游离坝轴线145m,利用原有下游围堰,采用高喷灌浆形成一道阻水幕。在下游围堰0+265桩号设一座三角形量水堰,观测大坝的总渗漏量。利用二坝下游坝脚处的滤水坝址做排水沟,在二坝下游桩号1+052处设一座三角形量水堰,观测二坝的地表渗漏量。通过在河床中埋设测压管来测定二坝坝基的渗漏量。大坝右岸山体布设7孔,大、二坝之间山体布设2孔,二坝左岸山体布设9孔。对大、二坝两岸山体绕坝渗流量进行监测,以此判断山体的稳定性,为坝体安全运行提供依据。

⑸大坝面板应力应变监测

在面板上选择有代表性的部位布置应变计、钢筋计和无应力计;在靠近周边缝的部位布置三向应变计组,用于观测面板的平面应力状态。

监测系统自动化状况

莲花水电站大坝安全监测系统自动化分两部分:一是内部监测自动化,包括除位移监测之外的所有监测项目;二是外部监测自动化,指大、二坝表面变形监测自动化系统。内部自动化系统由东北勘测设计研究院设计并施工,目前此项目还未完工,仅能进行数据自动化采集。外部自动化系统采用徕卡测量机器人进行自动化监测,该项目正在建设中,预计将于今年6月投入使用。

1、内部监测自动化

大坝面板板间缝、周边缝变形监测;面板应力应变监测;大、二坝渗流监测均在自动化监测系统中。在原测点处布置测量控制单元(MCU),通过通讯电缆引至副厂房工作室,接收上位机指令,选择测点,采集传感器信号。按设计将形成一个具备数据分析处理和远程监控的自动化系统,目前刚开发到数据采集阶段。数据采集系统初步运行已近两年,其间被雷电击坏两次,说明采集设备防雷措施需加强。另外,由于坝址地处高寒地区,冬季低温对系统正常运行也有一定影响。

2、外部监测自动化

利用坝下游L4和L6两基点做自动化监测测站,分别放置一台徕卡TCA2003全站仪(被厂家称为测量机器人),在大、二坝坝后原测点固定棱镜,采用边长或边角交会法观测,从而求得测点坐标。观测过程中利用大、二坝坝头基点L8、L9和L10作为参考点,进行温度和气压改正。除坝前15个测点外,其余56个测点均与自动化测站通视,这足以反映出坝体的整体位移。另外,也可采用人工观测坝前测点与自动化观测其余测点相结合的半自动化方案。TCA2003机载软件可完成水平角、垂直角和斜距的野外观测记录工作,观测中能自动检查各种限差。TCA2003可与计算机相联,实现采集控制和数据传输、整理自动化;远期目标在牡丹江进行远程控制。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读