建设城域光纤光缆网总体原则是:第一是应根据城域传送网的网络结构;第二是根据城域传送网的建设思路,网络的拓扑应具有灵活性和升级能力。根据近几年城域传送网建设的实践,提出几点城域网的光缆线路网的设计思路。
核心层光缆线路主要是连接城域网的核心接点,例如电话交换局、汇接局、目标局、移动交换局、核心/出口路由器等。核心接点通常数量不会很多,但其地位、作用重要,它不仅对传输带宽需求大,而且业务种类较多,同时对网络生存性要求较高。通常既是大的电话交换局所又是综合业务设备安装机楼,一般座落在交通方便或者是某区域的经济政治中心,同时,连接核心节点的光缆线路的路由上会有配线光缆和许多大客户需要考虑。因此,连接核心节点的光缆一般是主干光缆,通常光缆的纤芯数会比较多,少则上百芯,多则几百芯,甚至上千芯。核心层光缆线路初期建设可以采用环形结构、虚拟格形网配纤法。
这种虚拟格形网配纤法的光缆环网结构,具有快速向格状网演变的灵活性,非常适合快速组建类似ASON试验网的需求。但它只是虚拟格形网,生存性较差,如果光缆中断,有可能造成网状网的多条边同时中断。因此,条件许可的情况下,应逐步建设一个物理路由上的网状光纤光缆线路网。
主干光缆的纤芯数一般考虑应满足不少于5年的用户需求。主干光缆的纤芯数可以按整个城市总需求估算总出局纤芯数,然后根据用户分布情况,分摊到每个局的每条出局主干光缆。
城域网的汇聚层接点通常数量较多,都是重要业务点,它主要是连接交换机的端局、基站控制器、汇接路由器、专线用户等。汇聚容量较大,而且业务种类较多,要求业务的有效汇聚和调度,减轻核心层的带宽压力,解决带宽资源应用的合理性。因此,汇聚层光缆线路网络结构建议采用环形网结构为主,链型网为辅。
光缆环网结构最大的好处是光缆线路的可靠性大大提高,例如B、C段发生线路故障,光纤中断,它可从B经A、E、D连接到C恢复通信,但它需要有冗余的光纤为前提,它的缺点是成本较高。
汇聚层光缆的芯数主要决定汇聚层有源设备组网所需的纤芯数,即组建MSTP业务平台和数据接入设备组网所需的纤芯数。汇聚层的MSTP设备一般要求不超过6个开口点,有的电信业务经营者要求不超过8个开口点。通常按每5个开口点构成一套汇聚传输系统,每套汇聚传输系统按双向各占用4芯考虑;数据接入设备按每个开口点归属两个目标局/所,每个开口点占用4芯考虑。
接入层光缆线路比较复杂。它是从汇集点连接到无数个终端节点(例如:移动的基站、交换机的远端模块局、数据业务节点、大客户以及重要的客户等)光纤线路,它要面对各种应用用户或系统。但它的复盖区域一般不会太大,通常主要采用星/树型结构,对于需要连接部分专线用户、重要用户、对可靠性要求高的用户可采用环型结构。归纳起来有3种配纤方法。
(1)树型递减直接配纤法
树型递减直接配纤法是与原音频电缆直接配线法类似,即接入用户的配线光缆直接从主干光缆中引出,光缆的芯数从局端起向远端节点(远端分纤箱)逐级递减。
树型递减直接配纤法适用于需求分散在较大范围内,并且变动又小,用户较为稳定的地区。
树型递减直接配纤法的光纤的通融性极差,而且需要主干光缆的纤芯数较多,光纤资源不共享,光纤的利用率较低。如果节点的用户预测稍有偏差,可能造成某些节点纤芯不足,另外一些节点可能纤芯过剩。此外,树型递减直接配纤法的生存性也比较差,万一主干光缆发生故障,将影响它下游的用户。
每一段光缆的纤芯数等于其下游各交接箱的纤芯数总和。
(2)树型无递减直接配纤法
树型无递减直接配线法与树型递减直接配线法的结构大体相似,从局端到光缆交接箱、从一个光缆交接箱到另一个光缆交接箱之间的主干光缆芯数无递减。配线光缆从光缆交接箱引出。
树型无递减直接配纤法适用于受某些客观因素限制,如管道资源不足,用户分布预测困难,实现环网无递减配纤法较困难的区域。
由于这种配纤法从局端到光缆交接箱、从一个光缆交接箱到另一个光缆交接箱之间的主干光缆芯数无递减,所以它能立即满足沿线需求的变化,纤芯的融通性较高。但它的主干是线型,同样有上游光缆线路故障将直接影响下游的生存性的问题,因此,需要其他光缆路由进行补救,也是一种可靠性稍低的配纤方法。
从局端到最末一个交接箱的光缆纤芯数等于或略大于沿线交接箱所需纤芯数的总和。
(3)环形无递减交接配纤法
环形无递减交接配纤法是光缆闭合成环的无递减交接配纤法。
环形无递减交接配纤法对环上任何一点具有双路保护,适用于高速或宽带业务需求范围较广,并且增长迅速的市区及商业区,特别适用对可靠性要求较高的大容户。
环形无递减交接配纤法的纤芯通融性较高,它可随时满足沿线突发性的客户需求。
环网光缆的纤芯数等于环上所有交接箱纤芯数的总和。