造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

脉冲光纤激光器1概述

2018/06/19171 作者:佚名
导读: 光纤激光器是采用光纤作为激光介质的激光器,通过在光纤基质材料中掺杂不同的稀土离子,获得所对应波长的激光输出。掺杂的离子种类有掺铒(Er)、掺钕(Nd)、掺镨(Pr)、掺钬(Ho)、掺镱(Yb)、掺铥(Tm)等。光纤激光器(Fiber Laser)是指采用掺稀土元素光纤作为增益介质,由栗浦源所产生的泉浦光在光纤纤芯内形成高功率密度使得掺杂稀土离子能级形成"粒子数反转",适当加入正反馈回路构成谐

光纤激光器是采用光纤作为激光介质的激光器,通过在光纤基质材料中掺杂不同的稀土离子,获得所对应波长的激光输出。掺杂的离子种类有掺铒(Er)、掺钕(Nd)、掺镨(Pr)、掺钬(Ho)、掺镱(Yb)、掺铥(Tm)等。

光纤激光器(Fiber Laser)是指采用掺稀土元素光纤作为增益介质,由栗浦源所产生的泉浦光在光纤纤芯内形成高功率密度使得掺杂稀土离子能级形成"粒子数反转",适当加入正反馈回路构成谐振腔时便可产生激光。光纤激光器的果浦光被称合进入掺杂稀土金属离子光纤,粟浦波长上的光子被介质吸收形成粒子数反转,最后在光纤介质中因受激福射产生激光。由于掺杂稀土光纤同时起着导波作用因此光纤激光器是波导型的谐振装置。光纤激光器实际上是Fabry-Perot谐振腔(F-P)结构式的波长转换器,在栗浦波长上的光子被增益介质吸收形成粒子数反转,最后在增益介质中因受激发射产生激光。

光纤激光器诞生于20世纪60年代初,已经有五十多年的发展史。随着光纤通信技术、光纤制造工艺以及与激光器技术的日趋成熟而迅猛发展,特别是20世纪90年代后期,随着半导体激光器及掺杂光纤制作技术的日益成熟,光纤激光器的研究取得了重大进展,输出功率、波长调谐范围等性能得到了显著提高,适用于各种不同应用领域的光纤激光器纷纷面世。

典型光纤激光器工作原理

典型光纤激光器的基本结构主要由三部分组成:产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激发增益介质的泵浦源。其中,增益介质为掺杂稀土离子的纤芯。

在脉冲光纤激光器方面,光纤激光器实现脉冲输出的方式与普通的激光器一样主要采用锁模技术、调Q技术和脉冲种子源放大技术。

调Q光纤激光器是在谐振腔内插入Q开关器件,通过周期性改变腔损耗,实现调Q脉冲激光输出。南安普顿大学采用纤芯直径40 μm、数值孔径0.06的大模场面积掺镱光纤调Q,获得了脉冲能量1.2 mJ的窄脉冲宽度(37 ns)、高光束质量(M2=1.1)脉冲激光输出。由于光纤激光器中较长的增益介质,很难获得更窄的脉冲宽度激光输出。

为了获得高峰值功率、高能量的脉冲激光输出,主要是利用主振荡功率放大技术(MOPA)来实现。2005年,密西根大学采用调制的半导体激光器作为脉冲种子光源,通过四级光纤放大,实现1 064 nm的巨脉冲能量输出。两级单模光纤预放大后,激光的单脉冲能量由10~30 nJ放大到约38 μJ。再经过一级功率放大(LD功率40 W、波长980 nm抽运的纤芯直径50 μm双包层光纤)和二级功率放大(LD功率200W、波长915 nm 抽运的纤芯直径200 μm 双包层光纤),实现了巨脉冲能量的激光输出:当脉宽500 ns时,得到的单脉冲能量达82 mJ;脉宽50 ns时的单脉冲能量为27 mJ;脉宽4 ns时的脉冲峰值功率为2.4MW。

2005年,F D Teodoro利用双包层掺镱的光子晶体光纤作为脉冲放大的增益光纤,实现了脉冲宽度450 ps、脉冲能量0.7 mJ,峰值功率1.5 MW、近衍射极限(M2=1.05)的脉冲激光输出。接着,他们又利用纤芯直径140 μm的多模镱纤放大该输出激光,实现了4.5 MW的高能量脉冲激光输出。

2008年,F Di Teodoro等人利用大芯的掺铒光纤,在超短的皮秒脉冲范围内,已经实现了峰值功率1.2MW的脉冲激光输出[10]。2005年,南安普顿大学的研究员,在纤芯直径43 μm,数值孔径0.09的双包层掺杂光纤实现了脉冲宽度20 ps、光束质量M2=2.4、平均功率321 W的脉冲激光输出。

2009年Bülend ortac等用大模场面积的掺Yb光纤制作得到自启动的平均功率9W的飞秒脉冲输出,重复频率9.7 MHz,脉冲能量927 nJ,接近微焦量级。

2009 年Alexey Andrianov 等通过掺铒光纤放大器和色散降低光纤(DDF)、高非线性单模光纤(HN⁃SF)和普通单模光纤(SMF-28)对被动锁模的掺铒振荡器输出的230 fs,600 MHz,波长为1.57 μm的脉冲进行放大和压缩,并得到20~25 fs,调谐范围为1.57~2.1 μm的飞秒激光输出。

2010年J. Lhermite等用掺Yb光纤作增益介质,利用非线性偏振技术在全正色散域锁模获得了中心波长在976 nm,重复频率为40.6 MHz,平均功率为480 mW的激光脉冲,经过腔外体光栅压缩后可获得286 fs的超短脉冲输出。

2010年K. Kieu等用掺Er光纤激光器产生脉冲后,经掺铒光纤放大展宽后,再由SMF28光纤对脉冲进行压缩进入高非线性光纤(HNLF)后获得超连续谱(1~2μm)抽运掺Yb光纤并放大后获得高能量的超短脉冲输出,经过腔外体光栅压缩后可获得135 fs和11.5 W平均功率的超短脉冲输出。

2011年S.Hädrich等研究了通过两级放大获得高平均输出功率的掺Yb光纤激光器,并用BBO晶体对输出飞秒脉冲进行了倍频输出。该系统在中心波长1 040 nm时有不同的重复频率,系统经过二级预放和一级主放获得足够能量的脉冲,经光栅对压缩后得到406 fs,平均功率225 W的脉冲输出。

2011年J. Lhermite等又利用纤芯和包层直径分别为80 μm和200 μm的掺镱棒状光纤作为增益介质产生了中心波长为976 nm,单脉冲能量为500 nJ,脉冲宽度为460 fs,重复频率8.4 MHz,平均功率4.2 W的超短脉冲输出。

2011年美国密歇根大学的Bai Nie等设计了一种双包层掺镱全正常色散飞秒光纤激光器,该激光器具有一个窄的内腔式滤光器,产生的脉冲能量22 nJ,重复频率42.5 MHz,通过多光子脉间干涉相位扫描技术将脉冲压缩到42 fs,单脉冲能量10 nJ。

2011年康奈尔大学的研究人员使用正常色散锁模铥光纤激光器产生0.4 nJ的脉冲能量,输出脉冲经过消除啁啾后为470 fs。2012年Frithjof Haxsen等使用高非线性光纤和掺Tm光纤,并通过非线性偏振演化(NEP)和半导体可饱和吸收镜混合锁模以及小芯径、大数值孔径光纤进行色散补偿,得到单脉冲能量0.7 nJ,波长1 927 nm,482 fs的飞秒激光脉冲输出。

2012 年A.Chamorovskiy 等得到中心波长为1160 nm的半导体碟片激光器抽运的被动锁模飞秒光纤激光器。在波长2 085 nm处产生了890 fs,功率46mW的脉冲输出,该波长是目前飞秒光纤激光器最长的输出波长。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读