下面分别论述测试光源、功率计、偏振控制器以及测试系统对测试精确性、可靠性和重复性的影响。
测试光源是测试系统的激励源,由于用于测试而非用于传输,一般来说不需要功率太高,激光光源0dBm,宽谱源-10dBm/nm足以满足测试要求。同样因为是用于测试,光源的功率稳定度相当重要,除此之外还有一个相干长度的问题。其实任何激光光源都有相干长度的问题,一般FP或DFB激光光源的相干长度为1,000米或更长,人为使激光器的线宽变宽后也有10米左右,这就是说,只要测试系统的光路短于这个长度,就会有干涉,测试就会测不准或者可靠性降低。有一种基于掺铒光纤环的可调谐激光器很好地解决了这一问题,该激光器相干长度只有15厘米,而器件测试长度一般1~3米,所以一定不会有相干的影响,从而使测试值的稳定度、重复性和可靠性都非常高,是一种非常适合于器件测试的光源。
除了相干长度,激光光源信噪比是另一个关键参数,激光光源的信号与源自发辐射噪声的比值(S/SSE)是限制测试动态范围的关键因素。如果S/SSE只有60dB,那么当测试65dB的滤光片时由于滤光片不能滤去自发辐射噪声,所以测试只能显示60dB,导致测试失败。一般而言,可调谐激光光源的S/SSE有75dB,所以在要求测试大动态范围器件时应注意光源的S/SSE值。
对于宽谱源或ASE光源而言,波谱稳定度是一个关键参数,波谱稳定度是比积分功率稳定度更严格、更有意义的参数,它表征宽谱源在一段时间内波谱峰峰值变化的最大值。由于宽谱源一般配合光谱仪或波长计之类波长选择设备使用,所以积分功率稳定度对于测试没有太大意义。
功率计探测器的材料大致决定了功率计的整体性能,一般有Ge、Si、InGaAs等材料的探测器,除此之外还有一种低偏振反映度(PDR)探测器,这种探测器是在InGaAs探测器的基础上添加一些材料使得其对PDL非常不敏感,所以很适合用于PDL的测试。
除了材料之外,探测器面积是决定其用途的重要参数,探测器面积越大,其受光能力就越强,但灵敏度则会降低,反之亦然。所以一般用于校准的光功率计探测器面积都大于3mm2,用于探测很小的光功率如-100dBm光能量探测器面积一般为1mm2。一般来说如果光功率计采用裸光纤适配器,则要求光功率计探测器面积大于3mm2,否则光纤出射光很难充分耦合到探测器上,使测试重复性和可靠性大大降低。其实即使采用大面积探测器,裸光纤适配器中的光纤也极有可能触及探测器,导致探测器老化,使测试精度降低,所以一般建议采用熔接的方法,这样虽然增加了一次熔纤,但是确保了测试的长期稳定性和可靠性。
除了以上传统的探测器类型,还有一种宽口径积分球探测器技术。这种探测器的探测器面积相当于7mm2,由于采用积分球技术,所以它没有传统大口径探测器的表面不均匀性、光纤对准和光纤头容易触及探测器表面的问题,测试重复性也是传统探测器所无法相比的。
对随机扫描Poincare球偏振控制器(PC)而言,扫描周期、覆盖Poincare球面积、偏振光经过PC情况以及由于PC导致的光功率波动值等都是一些关键参数。这些参数的意思很容易理解,这里只想着重论述由于PC导致的光功率波动对测试的影响。我们知道PDL的测试其实就是探测当传输光偏振态(SOP)发生变化时,通过被测器件的光功率变化的最大值,所以如果由于其它原因导致光功率发生变化,测试系统就会误以为这也是PDL,导致PDL测试过大。所以对于PC而言,光功率波动值将直接影响测试的准确度。
所谓测试系统主要是指两个以上测试表或模块联合工作,形成组合之后新的操作界面,并完成自动测试的测试设备。传统系统搭建是通过一台计算机,用GPIB口控制几台光测试仪表进行,这里着重介绍通过模块组装系统的方法。其主要思路是,测试主机本身就是一台标准电脑,测试主机带有5个插槽,可以插入测试模块,组成简单的系统,对于大的测试系统还可添加扩展机,主机与扩展机之间通过数据线连接。这样扩展机上的槽位与主机上的槽位没有任何区别,插在扩展机上的模块与插在主机上的模块在数据传输速率上也没有任何区别,所以这种组建测试系统的方法使得系统数据传输速度非常快,操作也很方便。扩展机上还可级联扩展机,以组成更大的系统,所以扩容性非常好,WDM测试系统将可调谐光源、快速光功率计、Muller矩阵法偏振控制器和波长校准单元有机地结合起来,测试波长精度达5pm,只需点击鼠标就可测得IL、ORL和PDL随波长的变化曲线,并得出串扰矩阵,这也恰恰展示了利用主机+扩展机进行系统搭建的优势。