造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

包层泵浦耦合技术3侧面泵浦耦合方式

2018/06/19123 作者:佚名
导读: 熔锥侧面泵浦耦合方式 熔锥侧面泵浦耦合是将多根裸光纤和去掉外包层的双包层光纤缠绕在一起, 在高温火焰中加热使之熔化, 同时在光纤两端拉伸光纤, 使光纤熔融区成为锥形过渡段, 能够将泵浦光由多模光纤由双包层光纤侧面导入内包层, 从而实现定向侧面泵浦耦合。国内外用于通讯方面光纤无源器件-光纤定向耦合器主要用于光分路或者合路连接器,采用较为成熟的熔锥法生产, 工艺较简单, 制作周期短,

熔锥侧面泵浦耦合方式

熔锥侧面泵浦耦合是将多根裸光纤和去掉外包层的双包层光纤缠绕在一起, 在高温火焰中加热使之熔化, 同时在光纤两端拉伸光纤, 使光纤熔融区成为锥形过渡段, 能够将泵浦光由多模光纤由双包层光纤侧面导入内包层, 从而实现定向侧面泵浦耦合。

国内外用于通讯方面光纤无源器件-光纤定向耦合器主要用于光分路或者合路连接器,采用较为成熟的熔锥法生产, 工艺较简单, 制作周期短, 适于实现微机控制的半自动化生产。但是, 这种用于通讯的单模光纤定向耦合器是将一路或一路以上输入光信号按一定比例要求分配到两路或多路输出的光信号中去。其原理决定其只能进行对输入信号光功率分配, 因此, 输出的信号光功率必定小于输入最大信号的光功率, 因而无法用于实现光功率的扩展。在双包层光纤侧面泵浦耦合技术中, 在锥形区耦合段需要将多模泵浦光纤的包层去除露出纤芯, 同时双包层的外包层也要去除露出内包层, 并且要使之能够融合在一起, 因此, 其生产工艺较为复杂, 虽然已有相关专利可供查询参考, 但是最为重要的关键过程未见报道。DIGIOVANNI 等介绍了一种双包层熔锥侧面耦合器的生产工艺, 从中也可以看出, 其生产过程与目前的单模光纤耦合器有很大不同。国外已有一些能够生产多模光纤侧面耦合器, 例如美国的OFS , 他们已将此项术用于高功率的光纤激光器以及Raman 光纤放大器等领域.

嵌入反射镜式泵浦耦合

嵌入反射镜式泵浦耦合方式是在V 槽侧面泵浦耦合方式上的改进,首先将双包层光纤的外包层去除一小部分, 然后在内包层上刻蚀出一个小槽, 槽的深度足够放入用来反射泵浦光的嵌入微反射镜, 但是距纤芯还有一定距离, 以保证不破坏纤芯。嵌入的微反射镜的反射面可以是平面或是根据优化设计的曲面, 为了得到高的耦合效率, 其反射面事先镀上了高反率的膜层, 入射面镀了对泵浦光的增透膜。该技术中采用了光学胶用以将嵌入微反镜的出射面和光纤内包层粘接固定, 同时光学胶还作为折射率匹配介质用来降低界面的反射损耗。LD 泵浦源应当与嵌入微反镜足够近, 以保证具有较大发散角的泵浦光能够全部照射到微反镜的反射面上。

嵌入反射镜式泵浦耦合避免了V 槽侧面泵浦耦合要求利用侧面作为反光面的方式, 因此, 对于槽的加工要求大大降低, 但是仍要保证槽深不能破坏纤芯。KOPLOW 等利用此方式获得了5 .2W(波长1064nm)和2 .6W(波长1550nm)的光纤激光输出。实验获得的嵌入反射镜式泵浦耦合效率受x , y , z 3 个方向偏移失调量影响的曲线图。实验中采用了SDL-6380-A 多模半导体激光器作为泵浦源,其发光面为1μm ×100μm 长条形, 两个方向发散角分别为28°和12°, 所用的双包层光纤内包层为135μm ×135μm 正方形, 数值孔径约0 .45 。

角度磨抛侧面泵浦耦合

其基本原理是在双包层光纤去一小段, 剥去涂敷层和外包层, 将内包层沿纵向进行磨抛, 得到小段用以泵浦耦合光的平面(对于内包层形状为矩形、D型、六角形等双包层光纤, 内包层已有窄平面, 如果平面宽度足够, 可以不必磨抛双包层光纤)。然后将端面按一定角度磨抛好的泵浦光纤的纤芯相对该平面紧密贴合并固定好两纤的相对位置。泵浦光即可由泵浦光纤侧面耦合进入双包层光纤的内包层.

实际上, 由于泵浦光纤按一定角度磨抛好的端面并不能完全和双包层光纤内包层紧贴, 因此, 还需要利用光学胶将其空隙填充。一方面光学胶能够将泵浦光纤端面和内包层侧面固定好, 另一方面又作为折射率匹配介质将泵浦光有效导入内包层中。由于采用了光学胶, 因此, 不必对内包层纵向进行磨抛而得到平面, 直接利用光学胶也可将泵浦光由内包层的弯曲侧面导入。通常该侧面泵浦耦合技术要求泵浦光纤端面的磨抛角A 较小(约10°), 对于光纤端面磨抛工艺提出了很高的要求。利用该侧面泵浦耦合方式获得了高达90 %的耦合效率, 但是获得的光纤激光输出功率还未见有高于1W 的报道。可能是由于在高泵浦功率下, 光学胶难以承受其功率密度而导致挥发或分解所致。这里泵浦光纤的芯径100μm, 数值孔径0 .22 , 双包层光纤的芯径350μm , 数值孔径0 .37 。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读