造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

碳化硅肖特基二极管1碳化硅

2018/06/19126 作者:佚名
导读: 碳化硅材料的发展和优势 碳化硅早在 1842 年就被发现了,但因其制备时的工艺难度大,并且器件的成品率低,导致了价格较高,这影响了它的应用。直到 1955 年,生长高品质碳化硅的方法出现促进了 SiC 材料的发展,在航天、航空、雷达和核能开发的领域得到应用。1987 年,商业化生产的 SiC 进入市场,并应用于石油地热的勘探、变频空调的开发、平板电视的应用以及太阳能变换的领域。碳化

碳化硅材料的发展和优势

碳化硅早在 1842 年就被发现了,但因其制备时的工艺难度大,并且器件的成品率低,导致了价格较高,这影响了它的应用。直到 1955 年,生长高品质碳化硅的方法出现促进了 SiC 材料的发展,在航天、航空、雷达和核能开发的领域得到应用。1987 年,商业化生产的 SiC 进入市场,并应用于石油地热的勘探、变频空调的开发、平板电视的应用以及太阳能变换的领域。

碳化硅材料有很多优点,如禁带宽度很大、临界击穿场强很高、热导率很大、饱和电子漂移速度很高和介电常数很低如表 1-1。首先大的禁带宽度,如 4H-SiC其禁带宽度为 3.26 eV,是硅材料禁带宽度的三倍多,这使得器件能耐高温并且能发射蓝光;高的临界击穿场强,碳化硅的临界击穿场强 (2-4 MV/cm)很高,4H-SiC的临界击穿场强为 2.2 MV/cm,这要高出 Si 和 GaAs 一个数量级,所以碳化硅器件能够承受高的电压和大的功率;大的热导率,热导率是 Si 的 3.3 倍和 GaAs 的10 倍,热导率大,器件的导热性能就好,集成电路的集成度就可以提高,但散热系统却减少了,进而整机的体积也大大减小了;高的饱和电子漂移速度和低的介电常数能够允许器件工作在高频、高速下。但是值得注意的是碳化硅具有闪锌矿和纤锌矿结构,结构中每个原子都被四个异种原子包围,虽然 Si-C 原子结合为共价键,但硅原子 1.8 的负电性小于负电性为 2.6 的 C 原子,根据 Pauling 公式,离子键合作用贡献约占 12%,从而对载流子迁移率有一定的影响,据目前已发表的数据,各种碳化硅同素异形体中,轻掺杂的 3C-SiC 的载流子迁移率最高,与之相关的研究工作也较多,在较高纯的 3C-SiC 中,其电子迁移率可能会超过 1000 cm/(V.s),最高的跟硅也有一定的差距。

与 Si 和 GaAs 相比,除个别参数外(迁移率),SiC 材料的电热学品质全面优于 Si 和 GaAs 等材料,仅次于金刚石。因此碳化硅器件在高频、大功率、耐高温、抗辐射等方面具有巨大的应用潜力,它可以在电力电子技术领域打破硅的极限,成为下一代电力电子器件。

碳化硅功率器件的发展现状

碳化硅器件的出现大大的改善了半导体器件的性能,满足国民经济和国防建设的需要,目前,美国、德国、瑞典、日本等发达国家正竞相投入巨资对碳化硅材料和器件进行研究。美国国防部从 20 世纪 90 年代就开始支持碳化硅功率器件的研究,在 1992 年就成功研究出了阻断电压为 400 V 的肖特基二极管。碳化硅肖特基势垒二极管于 21 世纪初成为首例市场化的碳化硅电力电子器件。美国Semisouth 公司研制的 SiC SBD(100 A、600 V、300 ℃下工作)已经用在美国空军多电飞机。由碳化硅 SBD 构成的功率模块可在高温、高压、强辐射等恶劣条件下使用。目前反向阻断电压高达 1200 V 的系列产品,其额定电流可达到 20 A。碳化硅 SBD 的研发已经达到高压器件的水平,其阻断电压超过 10000 V,大电流器件通态电流达 130 A的水平。

SiC PiN 的击穿电压很高,开关速度很快,重量很轻,并且体积很小,它在 3KV以上的整流器应用领域更加具有优势。2000年Cree公司研制出19.5 KV的台面PiN二极管,同一时期日本的 Sugawara 研究室也研究出了 12 KV 的台面 PiN 二极管。2005 年 Cree 公司报道了 10 KV、3.75 V、50 A 的 SiC PiN 二极管,其 10 KV/20 A PiN二极管系列的合格率已经达到 40%。

SiC MOSFET 的比导通电阻很低,工作频率很高,在高温下能够稳定的工作,它在功率器件领域很有应用前景。目前国际上报道的几种结构:UMOS、VDMOS、LDMOS、UMOS ACCUFET,以及 SIAFET 等。2008 年报道的双 RESURF 结构LDMOS,具有 1550 V 阻断电压.

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读