造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

难熔金属性质

2018/06/19300 作者:佚名
导读: 简述 难熔金属最重要的优点是有良好的高温强度,对熔融碱金属和蒸气有良好的耐蚀性能。最主要的缺点是高温抗氧化性能差。钨、钼的塑性-脆性转变温度较高,在室温下难以塑性加工;铌和钽的可加工性、焊接性、低温延展性和抗氧化性均优于钼和钨。 低温脆性 塑性-脆性转变温度(以下简称转变温度)是衡量难熔金属及其合金低温塑性的重要参数(特别是钨和钼)。在难熔金属中,钽具有最好的塑性和

简述

难熔金属最重要的优点是有良好的高温强度,对熔融碱金属和蒸气有良好的耐蚀性能。最主要的缺点是高温抗氧化性能差。钨、钼的塑性-脆性转变温度较高,在室温下难以塑性加工;铌和钽的可加工性、焊接性、低温延展性和抗氧化性均优于钼和钨。

低温脆性

塑性-脆性转变温度(以下简称转变温度)是衡量难熔金属及其合金低温塑性的重要参数(特别是钨和钼)。在难熔金属中,钽具有最好的塑性和最低的转变温度(-196℃以下)。铌塑性较钽差,但优于钼和钨。钨的室温塑性最差,转变温度最高。钼的转变温度在室温上下。温度对钨、钽、钼、铌的塑性的影响见图。转变温度同材料受力状态和形变速度有关,也同材料的组织结构和表面状态有关。添加某些元素(特别是铼),以及进行较大量的塑性加工是改善钨和钼低温脆性的有效途径。间隙元素对难熔金属的转变温度有严重影响。

抗氧化性

钨和钼分别在 1000℃和725℃以上出现氧化物挥发和液相氧化物,人们常称之为"灾害性"氧化。铌和钽在空气中加热,仅当温度高于200℃和280℃时,才有明显的氧化;随着温度的升高,铌、钽氧化皮层开裂和粉化,使抗氧化性能变坏。为了解决这一关键难题,曾采取过两种措施:一是制备抗氧化合金,二是加抗氧化保护涂层,但都未能制得在约1050~1250℃下长期使用的材料,只制得加防护涂层后在约1400~1700℃高温下短期(几分钟到几小时)使用的材料。这种材料在一些航天器部件上得到实际应用。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读