离子发动机超长时间的持续工作固然是优点,可以逐渐积累到很高的速度,但这同样是缺点,因为这要求超长时间的持续电力供应。这要求携带一个电力供应装置,目前的方式是使用一个巨大的太阳能电池板,不仅加重重量,而且随着探测器远离太阳,其效率也不断下降。
可以说,目前限制离子发动机发展的瓶颈因素就是电力,由于目前的太阳能电力系统缺乏效率,离子发动机的设计也就只能在低电能的基础上进行。如果我们想往外围的深空继续进发,或者运送更大的载重,就必须解决这个问题,获得更大的电能,至少应该达到以兆瓦计算的规模,而目前的深空1号最多仅仅能产生2.5千瓦,其中能提供给离子发动机的是2.1千瓦。
对太阳能电力系统进行改进以增加太阳能的利用效率,目前唯一可预期的方式是使用纳米技术,但并不知道需要多久才能发展出有用的技术。所以对于近期来说,唯一的选择就是使用核电系统,目前的技术也能让船载核电系统产生数百千瓦的电能,而且在不远的将来能发展到兆瓦的级别。
在核电系统中,来自原子反应堆的热量可以通过热电转化方式或者热离子转化方式变成电能,这种办法在上世纪60年代就被看作是可以让人类开拓太阳系的技术,而这个方式也有可能提供一个低成本的系统用于太空商业化。
核电系统比太阳能电力系统产生更高的电力,从而可以让离子发动机获得更高的推力,更高的比冲量。虽然推力仍旧比不上传统的火箭发动机那么高,但比冲量方面的优势则很明显,传统的化学燃料火箭发动机的比冲量是大约400秒上下,深空1号通过太阳能电力系统获得的比冲量在3,300秒左右,而利用核电系统的离子发动机可以达到13,000秒。
由于电力充足,核电系统可以让发动机和仪器分享和调配电力。当仪器不需要电力的时候,可以把全部的电力都送给发动机,但需要读取、检测、发送信息时,可以关掉发动机,把电力都调给仪器。这就提供了节约大量重量的可能性。而最大的好处自然是核电系统即使远离太阳也不影响工作效率,从而能在深空工作。