造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

测井系列选择的依据

2018/06/19165 作者:佚名
导读: 针对不同类型油藏测井系列选择依据辽河盆地是是辽河油田的主力油区, 属于断块式复式油气藏,油藏类型比较复杂,从油质上分为稠油、稀油、高凝油等油藏,从储层性质又分砂岩油气藏、碳酸盐岩油气藏、火成岩油气藏、变质岩油气藏。油气藏类型不同,各个类型油气藏储层的岩性、物性、电性、水性也不同。而储层的岩性、物性、电性、水性不同各种测井曲线的反映也不同。而不同测井系列在解决不同的地质问题有各自的优缺点,因此

针对不同类型油藏测井系列选择依据

辽河盆地是是辽河油田的主力油区, 属于断块式复式油气藏,油藏类型比较复杂,从油质上分为稠油、稀油、高凝油等油藏,从储层性质又分砂岩油气藏、碳酸盐岩油气藏、火成岩油气藏、变质岩油气藏。油气藏类型不同,各个类型油气藏储层的岩性、物性、电性、水性也不同。而储层的岩性、物性、电性、水性不同各种测井曲线的反映也不同。而不同测井系列在解决不同的地质问题有各自的优缺点,因此不同类型油气藏所选用的测井系列是不同的,依据主要取决于它是否能够鉴别岩性、划分储集层、比较精确地提供主要的地质参数以及能够比较可靠地评价储层中的流体性质。

对于不同油质在在选择测井系列及项目上存在不同,首先稠油油气藏,辽河油田的稠油油气藏都是砂泥岩储层,而且埋藏深度较浅(小于2000米)。稠油油气藏的电阻率与周围水层相比很高,电阻增大率在3-4倍,而且稠油油气藏大多数为块状油藏,因此所须的测井系列和项目相对简单,选用不同探测深度(深、中、浅)电阻率测井、一条孔隙度测井、自然伽玛、自然电位、井径、井斜数控常规完井测井系列即可。其次对于稀油、高凝油来说,特别是稀油,它们存在于各种岩性的油藏中,而且埋藏深度深浅不一,油藏电阻增大率在1.5左右,有的甚至等于1,而影响电阻率的因素包括岩性、物性、水性,这样要有效识别油气藏,就要靠能识别岩性、物性、水性的测井项目来剔除它们的影响,或用只反映油气水流体性质的测井项目来识别如核磁共振测井。因此在选择测井系列及项目时,要针对测井所要解决的地质和工程上的实际问题,选择合理的测井系列,具体依据如下:

砂岩油

1、普通的砂泥岩油气藏层

这类油气藏的岩性、物性基本相同,孔隙结构及渗透性比较简单,在同一地区、同一口井中水性基本不变。也是占我油田的油气藏的大多数。测井的主要目的是发现油气层和精确计算储层的孔隙度、渗透率、含油饱和度等地质参数,为准确计算油气储量和制定开发方案提供可靠依据,根据这一需要,必测项目要求有不同探测深度(深、中、浅)电阻率测井、孔隙度测井、自然伽玛(或自然伽玛能谱)、自然电位、井径、井斜等项目。

2、细砂、粉砂岩低阻油气藏

这类油气藏的岩性较细,物性较均匀,在同一地区、同一口井中水性基本不变,但是这类油气藏的的电阻率值不高,与水层的电阻率值比较相差不多,这样在相同岩性、物性、水性条件下这类油气藏与水层电阻率接近而不易区分。那么核磁共振测井资料就能很好区分油气水层。核磁测井仪能消除岩石骨架的影响,直接测量地层流 体的孔隙度,并且能测量出束缚水流体和可动流体的孔隙度以及地层的渗透率。 它还能利用先进的测井模式快速 识别油、气、水三相流体,配合电阻率测井可以准确计算出油、 气、水饱和度。它还可以用来研究地层孔隙的孔 径和地层流体的粘度。因此在这类油气藏的井中, 除了测常规的电阻率测井、孔隙度测井、自然伽玛(或自然伽 玛能谱)、自然电位、井径、井斜等项目外, 应加测核磁共振测井项目。

3、砂砾岩高阻油气藏

这类油气藏的岩性粗细不均匀,大到砾岩,小到粉砂甚至还有泥岩,物性也不均匀,孔隙结构也比较复杂。具有较高的电阻率值,但是高的电阻率值不一定反映含油性,也可能反映岩性,这样电阻率曲线就不能很好区分油水层,如欧力坨沙三段的砂砾岩高阻油气藏,有的电阻率值为40欧姆的储层出油,而电阻率值为100欧姆的储层出水,那么常规的测井系列就不能满足储层评价的需要,而核磁共振测井资料就能很好区分油气水层。核磁测井仪能消除岩石骨架的影响,直接测量地层流体的孔隙度,并且能测量出束缚水流体和可动流体的孔隙度以及地层的渗透率。它还能利用先进的测井模式快速识别油、气、水三相流体,配合电阻率测井可以准确计算出油、气、水饱和度。它还可以用来研究地层孔隙的孔径和地层流体的粘度。因此在这类油气藏的井中,除了测常规的电阻率测井、孔隙度测井、自然伽玛(或自然伽玛能谱)、自然电位、井径、井斜等项目外,应加测核磁共振测井项目。(如欧50井)

4、高束缚水饱和度砂泥岩低阻油气藏

形成低阻油气藏的主要原因是它的高束缚水饱和度而导致油气层电阻率低,使之与水层电阻率接近而不易区分,而核磁共振测井与常规资料结合能较准确的求准储层的束缚水饱和度、可动水饱和度和油气饱和度及孔隙度和渗透率。因此,这类储层应选择3700的常规测井、核磁共振测井。

5、高矿化度泥浆形成的砂泥岩低阻油气藏

形成低阻的主要原因是高矿化度泥浆而导致油气层电阻率降低,使之与水层电阻率接近而不易区分。咸水泥浆侵入造成的低电阻率油层的识别是辽河浅海勘探开发的难题。在泥浆矿化度小于100000ppm(大致数)时,选择核磁共振测井来确定储层的束缚水饱和度、可动水饱和度和油气饱和度及孔隙度和渗透率;另外,由于阵列感应测井有三种纵向分辨率(1ft、2ft、4ft)六种探测深度(10in、20in、30in、60in、90in、120in)共18条曲线,且深探测的线圈系探测深度(约3m)较深侧向探测深度(约2m)深,基本上没有泥浆侵入的影响,能反映地层的真电阻率,油气层的电阻率与水层的电阻率就会有较明显的差异。因此,这类储层应选择3700的常规测井、核磁共振测井、阵列感应测井。

6、薄层及薄互层砂泥岩油气藏

对于薄层及薄互层,一般电极系测井因层薄受其上下围岩影响,导致所测得的电阻率与其真电阻率差别较大,对薄层及薄互层油气层的影响就更大,薄层电阻率测井仪分辨率为2in(5cm),也就是说对于大于5cm的储层, 薄层电阻率测井就能实现较准确的电阻率测量。而3700的常规测井的完井系列的自然伽马曲线能准确反映地层的泥质含量的变化,三孔隙度(补偿密度、补偿中子、声波时差)测井曲线结合能很好的反映储层物性的变化。因此, 这类储层应选择3700的常规测井的完井系列和薄层电阻率测井。

7、低孔隙度低渗透率砂泥岩油气藏

地层的岩性、物性不均匀造成地层的孔隙度很低和渗透率很低的原因,对于低孔隙度低渗透率地层,由于造成一般电极系测井因储层受其岩性、物性影响,导致所测得的电阻率与其真电阻率差别较大,特别是对薄层及薄互层油气层的影响就更大,薄层电阻率测井仪分辨率很高,为2in(5cm),也就是说对于大于5cm的储层,薄层电阻 率测井就能实现较准确的电阻率测量。3700的常规测井的完井系列的三孔隙度(补偿密度、补偿中子、声波时差)测井曲线结合能很好的反映储层岩性、物性的变化。因此,这类储层应选择3700的常规测井的完井系列和薄 层电阻率测井。

碳酸盐岩油

由于碳酸盐岩储层具有严重的非均质性和储集空间类型的复杂性,针对碳酸盐岩储层的测井评价面临的问题越来越复杂。有关储层类型,储层渗透性的好坏,流体性质判别,储层参数的计算等,储层测井评价工作已显得尤为重要,仅仅依靠常规测井曲线完成储层测井评价已无法满足。因此,找一套利用成像测井技术评价储层,而搞清储层的储集特征,建立测井新技术评价储层有效的技术方法,是碳酸盐岩气藏勘探的重要基础。

辽河盆地的碳酸盐岩地层电阻率普遍较高,三孔隙度曲线很难反映储层的特征,用常规测井曲线较难判断储层参数(Ф,k,Sw),结合测井新技术较为容易地解决了这一困难,针对碳酸盐岩地层特性主要加测了井周声波成像,另外在其中部分井又增加了核磁测井、阵列声波测井,其效果比较显著。

1、利用成像测井进行储层裂缝、孔洞及层界面的识别

碳酸盐岩在纵、横向上存在巨大的非均质性,给常规测井解释造成困难。如,电阻率、声波时差对孔隙和裂缝的响应极不敏感,而中子、密度信息对孔隙、裂缝则可能基本不响应,也可能过分夸大其响应,这完全随机地取决于仪器推靠或偏心状态。成像测井资料为认识孔隙形状、大小和非均质分布提供了极有价值的信息。声成像测井图象色彩的变化代表岩石声阻抗的变化,而电成像测井图象色彩的变化代表电阻率的变化。孔隙和裂缝由于其固有特性在图象上呈分散状、片状或条带状的深色显示。)。通过声、电成像测井处理解释,可以有效识别储层的储集空间及渗滤通道,从而评价储层的储层类型。

2、利用阵列声波(MAC&XMAC)进行储层渗透性评价

通过多极子阵列声波测井MAC(XMAC)获得的斯通利波时差和衰减的异常主要与岩性、地层渗透率有关。用纵横波和密度资料,可以计算出理论上的斯通利波时差。用实测斯通利波时差和相比,其差异为流体移动指数,它较好地反映了地层流体的可动性,是判断地层裂缝是否有效、孔隙是否连通、基质孔隙对地层渗透性是否有贡献的重要指示。结合地层有效孔隙度和斯通利波波形的衰减分析进行双参数反演,在以孔隙为主或泥饼影响不大的情况下,会计算出较准确的渗透率,进而评价储层渗透性的好坏。通过斯通利波渗透率处理得到的可动流体移动指数评价储层的有效渗透性,可以弄清气藏获得高产的原因。

3、利用核磁资料进行储层参数计算

现代核磁共振测井响应仅与岩石孔隙流体中氢核的含量与状态有关,测量岩石的有效孔隙度不受岩石骨架、泥质的影响。给定恰当的T2截止值,可以准确地区分不同的孔隙成分,如自由流体孔隙度、毛细管流体孔隙度、粘土束缚水孔隙度等,从而计算出较准确的束缚水饱和度。根据核磁共振孔隙度及驰豫特性评价地层渗透性,可以估算较为准确的渗透率。通过测井仪测量的横向驰豫时间信息,能反映饱和水岩石的孔隙尺寸大小的分布情况。核磁共振测井提供的孔、渗、饱储层参数中,孔隙度、渗透率比较可靠,含水饱和度受影响的因素较多,应用时应慎重考虑,而提供的束缚水饱和度较为准确。

4、利用自然伽马能谱测井进行高铀储层识别

自然伽玛能谱测井目的是对地层中元素产生的天然放射性进行能谱分析,在地层中,铀(U)、钍(Th)、钾(K)等放射性元素所释放的自然伽玛射线能量从0.5MeV到2.5MeV,它们都有各自的特征能谱,测井时采集系统根据不同的能量窗口对井下仪器探测到的地层总能谱进行剥谱,确定地层中常见的放射性元素U、Th、K的含量,研究各元素在地层岩石中的分布规律,一般而言,放射性元素的分布与岩石的沉积环境、生油情况、物质来源、地下水的活动和粘土类型以及粘土含量等一系列地质因素有关。

在碳酸盐岩储层中,一般情况下自然伽马值较低,大约在30API左右,那么在碳酸盐岩储层如果出现高的自然伽马值,一般为两种情况,一种是碳酸盐岩裂缝充填含高自然伽马值的矿物(如粘土),另一种情况为高铀储层,因为放射性矿物铀易溶于水,被油气层驱替的地层水中的铀被保留一部分在储层中,这样在自然伽玛能谱测井曲线中,自然伽玛曲线测井值较高,而无铀伽玛曲线测井值较低,此储层为高铀储层,在碳酸盐岩裂缝中往往存在这样的高铀储层。

因此为了探明辽河油田的碳酸盐岩储层的特性,应选择3700的常规测井的完井系列和成像测井、核磁测井、阵列声波测井及自然伽马能谱测井项目,才能准确评价碳酸盐岩储层。

火成岩岩性油

辽河盆地火成岩较为广泛,除了以混合花岗岩为主的火成岩基底外,还包括中-新生代频繁的火山活动所形成的各种火成岩。

火成岩储层是一种裂缝-溶蚀孔洞双孔隙介质非均质储层,它比碎屑砂岩和碳酸盐岩有更为复杂的岩电关系,其主要表现在:岩石的矿物成分复杂,骨架参数难于确定,岩石的非均质性强,裂缝、溶蚀孔的类型、组合分布有极强的各向异性,岩石的基质孔隙(晶间孔、晶内溶蚀孔)很小,一般不含油,岩石的结晶程度与相带的分布有直接关系,纵向上火成岩的岩性分布有较大的差异,有侵入的辉绿岩、喷发的玄武岩、粗面岩、安山岩类及烘烤变质的板岩以及指状穿插的辉绿岩和泥岩互层。

火成岩的储集空间受火成岩的岩相和成因控制,孔隙和裂缝又可划分为原生孔隙和次生孔隙,(1)原生孔隙包括原生节理系统产生的裂缝、气孔、粒间孔和晶间孔(2)次生孔隙和裂缝主要包括:溶蚀孔、洞,晶内和晶间溶孔和受构造应力产生的不同类型的各种裂缝。根据对储层和产能做出贡献的大小,又可将孔隙和裂缝划分为有效孔、缝和无效缝。①有效孔隙:火山碎屑岩、凝灰岩的粒间孔,火山熔岩、侵入岩溶蚀孔、洞和晶间、晶内的溶蚀孔,而原生气孔、晶间孔为无效孔隙,②有效裂缝:受构造应力产生的开启裂缝、半充填缝,而原始节理缝中受应力作用产生的各种诱导缝为无效缝。

由于火成岩的储集空间和渗流通道均与碳酸盐岩类似,其电性特征和三孔隙度曲线特征也与碳酸盐岩类似,用常规曲线同样难于识别储层及其有效性。因此,在火成岩储层识别中仍然采用和碳酸盐岩类似的方法。在选择3700的常规测井的完井系列的同时, 利用自然伽玛能谱测井进行火成岩的岩性识别及高铀储层识别,利用声、电 成像对孔隙、裂缝进行分析,利用阵列声波 (MAC&XMAC)进行储层渗透性评价,利用核磁资料进行储层参数 计算。精确评价火成岩储集层。

变质岩油

辽河盆地也存在变质岩油气藏,主要为变余石英岩和板岩,这类油气藏和火成岩油气藏类似,它主要是一种裂缝介质非均质储层,它比碎屑砂岩有更为复杂的岩电关系,其电性特征和三孔隙度曲线特征也与火成岩类似,用常规曲线同样难于识别储层及其有效性。因此,在变质岩储层识别中仍然采用和火成岩类似的方法。在选择3700的常规测井的完井系列的同时,利用自然伽玛能谱测井进行火成岩的岩性识别及高铀储层识别,利用声、电成像对孔隙、裂缝进行分析,利用阵列声波(MAC&XMAC)进行储层渗透性评价,利用核磁资料进行储层参数计算。精确评价变质岩储集层。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读