通常,一维激光驻波场由两束相向传播的偏振方向相互平行的线偏振激光束或旋转方向相同的圆偏振光干涉而成,在二光束相遇区域干涉光强随空间周期性变化,且对原子产生正比于强度梯度的偶极囚禁力是一维驻波场的光强分布(周期是γ/2)或囚禁原子的一维光学势分布。当冷原子束被装载到一维驻波场中,并且光场为红失谐时,冷原子将被囚禁于波腹处;而当光场为蓝失谐时,冷原子将被囚禁于波节处,从而形成一维的原子光学晶格,周期也是γ/2。
1993年,德国慕尼黑大学的Hi~nsch小组采用二对正交的一维驻波激光场构成了二维原子光学品格。两对光束问的位相发生细微变化,将影响势阱的偏振和阱深等性质。为了解决这一
问题,他们把激光输出的线偏振光经过迈克尔逊干涉仪的反射镜反射后形成了具有相同线偏振的二维驻波场,并通过移动干涉仪中的一块反射镜,把二个正交驻波场的相位差牢牢地控制在咖=7r/2,以便得到稳定的矩形晶格,由于相邻势阱底部的圆偏振方向是相反的,势阱的间隔为γ/2,故这样的二维晶格是反铁磁性的。
另一类二维光学品格由三束光干涉而成,在这一方案中,三束激光均为线偏振且波矢之间的夹角均为120。,构成了六方晶格,并且相邻势阱中原子的磁矩也是反向的。但这与前面的矩形晶格方案不同,光束之间的相位差不会对晶格形态产生任何影响。当晶格光场为蓝失谐时,冷原子被囚禁在势阱底部,形成一六方晶格;而当晶格光场为红失谐时,冷原子被囚禁在势阱顶部,形成一面心六方晶格。
1993年,H~insch等采用三对正交的驻波激光场构成了三维原子光学晶格。三维的情况耍比二维的情况复杂一些,除了保持原来z和Y方向驻波场之间的相位差之外,z和驻波场之间的相位差也将对晶格的性质产生很大的影响。此外,还有采用四束光干涉而成的一些三维光学晶格方案[,其中Z方向的光束是圆偏振的,其余三束光是线偏振的(在xoy平面内),光束间的夹角均是120。虽然光束在xoy平面内的投影情况相同,但正是那第四束圆偏振光(方向上的),打破了盯+和一势阱之间的对称性。由于囚禁的原子具有相同的磁化强度,因而形成了铁磁性的体心立方晶格。
通常,晶格光场中的冷原子是通过磁光阱来装载的,且构成光学晶格的激光一般是近共振的。由于原子间的碰撞以及光子散射效应,晶格中的原子密度一般不超过10oms/cm而晶格密度一般为10cm左右。如此,晶格的原子填充率很低(早期的实验结果不到10%,最近达到40%左右),无法保证每个晶格的格点上都有原子。这就是称其为“光学晶格”,而不是“光子晶体”的原因之一。
H~nsch小组的研究发现采用γ=10.6m的C02激光来构成光学晶格即能解决上述问题。由于CO2激光的失谐量非常大,以致于原子每次发生光子散射的时间间隔长达600s以上,这表明原子在CO2激光晶格中的寿命将比YAG激光晶格中的寿命长约1000倍。另一方面,原子在C02晶格中的温度低达10uK左右,原子密度被大幅度提高到10_10atoms/cm更高,同时晶格密度降为100atoms/cm0。因此,对于CO2激光晶格,每个格点至少包含了个冷原子。显然,CO激光晶格是一种特殊的光学晶格,可用于制备中红外光子晶体。