造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

二极管其他资料

2018/06/19111 作者:佚名
导读: 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结

二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

主要参数

用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:

1、最大整流电流

是指二极管长期连续工作时允许通过的最大正向电流值,其值与PN结面积及外部散热条件等有关。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为141左右,锗管为90左右)时,就会使管芯过热而损坏。所以在规定散热条件下,二极管使用中不要超过二极管最大整流电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。

2、最高反向工作电压

加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。

3、反向电流

反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10℃,反向电流增大一倍。例如2AP1型锗二极管,在25℃时反向电流若为250uA,温度升高到35℃,反向电流将上升到500uA,依此类推,在75℃时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25℃时反向电流仅为5uA,温度升高到75℃时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。

4.动态电阻Rd

二极管特性曲线静态工作点Q附近电压的变化与相应电流的变化量之比。

参数符号及其意义

CT---势垒电容

Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容

Cjv---偏压结电容

Co---零偏压电容

Cjo---零偏压结电容

Cjo/Cjn---结电容变化

Cs---管壳电容或封装电容

Ct---总电容

CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比

CTC---电容温度系数

Cvn---标称电容

IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流

IF(AV)---正向平均电流

IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。

IH---恒定电流、维持电流。

Ii--- 发光二极管起辉电流

IFRM---正向重复峰值电流

IFSM---正向不重复峰值电流(浪涌电流)

Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流

IF(ov)---正向过载电流

IL---光电流或稳流二极管极限电流

ID---暗电流

IB2---单结晶体管中的基极调制电流

IEM---发射极峰值电流

IEB10---双基极单结晶体管中发射极与第一基极间反向电流

IEB20---双基极单结晶体管中发射极向电流

ICM---最大输出平均电流

IFMP---正向脉冲电流

IP---峰点电流

IV---谷点电流

IGT---晶闸管控制极触发电流

IGD---晶闸管控制极不触发电流

IGFM---控制极正向峰值电流

IR(AV)---反向平均电流

IR(In)---反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。

IRM---反向峰值电流

IRR---晶闸管反向重复平均电流

IDR---晶闸管断态平均重复电流

IRRM---反向重复峰值电流

IRSM---反向不重复峰值电流(反向浪涌电流)

Irp---反向恢复电流

Iz---稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流

Izk---稳压管膝点电流

IOM---最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流

IZSM---稳压二极管浪涌电流

IZM---最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流

iF---正向总瞬时电流

iR---反向总瞬时电流

ir---反向恢复电流

Iop---工作电流

Is---稳流二极管稳定电流

f---频率

---电容变化指数;电容比

Q---优值(品质因素)

δvz---稳压管电压漂移

di/dt---通态电流临界上升率

dv/dt---通态电压临界上升率

PB---承受脉冲烧毁功率

PFT(AV)---正向导通平均耗散功率

PFTM---正向峰值耗散功率

PFT---正向导通总瞬时耗散功率

Pd---耗散功率

PG---门极平均功率

PGM---门极峰值功率

PC---控制极平均功率或集电极耗散功率

Pi---输入功率

PK---最大开关功率

PM---额定功率。硅二极管结温不高于150度所能承受的最大功率

PMP---最大漏过脉冲功率

PMS---最大承受脉冲功率

Po---输出功率

PR---反向浪涌功率

Ptot---总耗散功率

Pomax---最大输出功率

Psc---连续输出功率

PSM---不重复浪涌功率

PZM---最大耗散功率。在给定使用条件下,稳压二极管允许承受的最大功率

RF(r)---正向微分电阻。在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻

RBB---双基极晶体管的基极间电阻

RE---射频电阻

RL---负载电阻

Rs(rs)----串联电阻

Rth----热阻

R(th)ja----结到环境的热阻

Rz(ru)---动态电阻

R(th)jc---结到壳的热阻

r δ---衰减电阻

r(th)---瞬态电阻

Ta---环境温度

Tc---壳温

td---延迟时间

tf---下降时间

tfr---正向恢复时间

tg---电路换向关断时间

tgt---门极控制极开通时间

Tj---结温

Tjm---最高结温

ton---开通时间

toff---关断时间

tr---上升时间

trr---反向恢复时间

ts---存储时间

tstg---温度补偿二极管的贮成温度

a---温度系数

λp---发光峰值波长

△ λ---光谱半宽度

η---单结晶体管分压比或效率

VB---反向峰值击穿电压

Vc---整流输入电压

VB2B1---基极间电压

VBE10---发射极与第一基极反向电压

VEB---饱和压降

VFM---最大正向压降(正向峰值电压)

VF---正向压降(正向直流电压)

△VF---正向压降差

VDRM---断态重复峰值电压

VGT---门极触发电压

VGD---门极不触发电压

VGFM---门极正向峰值电压

VGRM---门极反向峰值电压

VF(AV)---正向平均电压

Vo---交流输入电压

VOM---最大输出平均电压

Vop---工作电压

Vn---中心电压

Vp---峰点电压

VR---反向工作电压(反向直流电压)

VRM---反向峰值电压(最高测试电压)

V(BR)---击穿电压

Vth---阀电压(门限电压、死区电压)

VRRM---反向重复峰值电压(反向浪涌电压)

VRWM---反向工作峰值电压

V v---谷点电压

Vz---稳定电压

△Vz---稳压范围电压增量

Vs---通向电压(信号电压)或稳流管稳定电流电压

av---电压温度系数

Vk---膝点电压(稳流二极管)

VL ---极限电压

识别

小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

半导体是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。半导体最重要的两种元素是硅(读“gui”)和锗(读“zhe”)。我们常听说的美国硅谷,就是因为起先那里有好多家半导体厂商。

. 二极管应该算是半导体器件家族中的元老了。很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管。

LED发光二极管分类

1.按发光管发光颜色分

按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。

2.按发光管出光面特征分

按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。

圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm的发光二极管记作T-1;把 φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类:

(1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。

(2)标准型。通常作指示灯用,其半值角为20°~45°。

(3)散射型。这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。

二极管型号命名方法

二极管的型号命名规定由五个部分组成

二极管和半导体的关系

二极管的正负二个端子。正端A称为阳极,负端K 称为阴极。电流只能从阳极向阴极方向移动。一些初学者容易产生这样一种错误认识:“半导体的一‘半’是一半的‘半’;而二极管也是只有一‘半’电流流动(这是错误的),所有二极管就是半导体 ”。其实二极管与半导体是完全不同的东西。我们只能说二极管是由半导体组成的器件。半导体无论那个方向都能流动电流。

测试二极管的好坏

一)普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 1.极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 2.单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 3.反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V(BR)”键,测试表即可指示出二极管的反向击穿电压值。 也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。

(二)稳压的检测

1.正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 2.稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表测量稳压二极管两端的电压值,所测的读数即为稳压二极管的稳压值。若稳压二极管的稳压值高于15V,则应将稳压电源调至20V以上。 也可用低于1000V的兆欧表为稳压二极管提供测试电源。其方法是:将兆欧表正端与稳压二极管的负极相接,兆欧表的负端与稳压二极管的正极相接后,按规定匀速摇动兆欧表手柄,同时用万用表监测稳压二极管两端电压值(万用表的电压档应视稳定电压值的大小而定),待万用表的指示电压指示稳定时,此电压值便是稳压二极管的稳定电压值。 若测量稳压二极管的稳定电压值忽高忽低,则说明该二极管的性不稳定。 图4-72是稳压二极管稳压值的测量方法。

(三)双向触发的检测

1.正、反向电阻值的测量用万用表R×1k或R×10k档,测量双向触发二极管正、反向电阻值。正常时其正、反向电阻值均应为无穷大。若测得正、反向电阻值均很小或为0,则说明该二极管已击穿损坏。 2.测量转折电压测量双向触发二极管的转折电压有三种方法。 第一种方法是:将兆欧表的正极(E)和负极(L)分别接双向触发二极管的两端,用兆欧表提供击穿电压,同时用万用表的直流电压档测量出电压值,将双向触发二极管的两极对调后再测量一次。比较一下两次测量的电压值的偏差(一般为3~6V)。此偏差值越小,说明此二极管的性能越好。 第二种方法是:先用万用表测出市电电压U,然后将被测双向触发二极管串入万用表的交流电压测量回路后,接入市电电压,读出电压值U1,再将双向触发二极管的两极对调连接后并读出电压值U2。 若U1与U2的电压值相同,但与U的电压值不同,则说明该双向触发二极管的导通性能对称性良好。若U1与U2的电压值相差较大时,则说明该双向触发二极管的导通性不对称。若U1、U2电压值均与市电U相同时,则说明该双向触发二极管内部已短路损坏。若U1、U2的电压值均为0V,则说明该双向触发二极管内部已开路损坏。 第三种方法是:用0~50V连续可调直流电源,将电源的正极串接1只20kΩ电阻器后与双向触发二极管的一端相接,将电源的负极串接万用表电流档(将其置于1mA档)后与双向触发二极管的另一端相接。逐渐增加电源电压,当电流表指针有较明显摆动时(几十微安以上),则说明此双向触发二极管已导通,此时电源的电压值即是双向触发二极管的转折电压。 图4-73是双向触发二极管转折电压的检测方法。

(四)发光的检测

1.正、负极的判别将发光二极管放在一个光源下,观察两个金属片的大小,通常金属片大的一端为负极,金属片小的一端为正极。 2.性能好坏的判断 用万用表R×10k档,测量发光二极管的正、反向电阻值。正常时,正向电阻值(黑表笔接正极时)约为10~20kΩ,反向电阻值为250kΩ~∞(无穷大)。较高灵敏度的发光二极管,在测量正向电阻值时,管内会发微光。若用万用表R×1k档测量发光二极管的正、反向电阻值,则会发现其正、反向电阻值均接近∞(无穷大),这是因为发光二极管的正向压降大于1.6V(高于万用表R×1k档内电池的电压值1.5V)的缘故 用万用表的R×10k档对一只220μF/25V电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极),再将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。 也可用3V直流电源,在电源的正极串接1只33Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极(见图4-74),正常的发光二极管应发光。或将1节1.5V电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。

(五)红外发光的检测

1.正、负极性的判别红外发光二极管多采用透明树脂封装,管心下部有一个浅盘,管内电极宽大的为负极,而电极窄小的为正极。也可从管身形状和引脚的长短来判断。通常,靠近管身侧向小平面的电极为负极,另一端引脚为正极。长引脚为正极,短引脚为负极。 2.性能好坏的测量用万用表R×10k档测量红外发光管有正、反向电阻。正常时,正向电阻值约为15~40kΩ(此值越小越好);反向电阻大于500kΩ(用R×10k档测量,反向电阻大于200 kΩ)。若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击穿损坏。若测得正、反向电阻值均为无穷大,则说明该二极管已开路损坏。若测得的反向电阻值远远小于500kΩ,则说明该二极管已漏电损坏。Rac电子资料网

(六)红外光敏的检测

将万用表置于R×1k档,测量红外光敏二极管的正、反向电阻值。正常时,正向电阻值(黑表笔所接引脚为正极)为3~10 kΩ左右,反向电阻值为500 kΩ以上。若测得其正、反向电阻值均为0或均为无穷大,则说明该光敏二极管已击穿或开路损坏。 在测量红外光敏二极管反向电阻值的同时,用电视机遥控器对着被测红外光敏二极管的接收窗口(见图4-75)。正常的红外光敏二极管,在按动遥控器上按键时,其反向电阻值会由500 kΩ以上减小至50~100 kΩ之间。阻值下降越多,说明红外光敏二极管的灵敏度越高。

(七)其他光敏的检测

1.电阻测量法用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。 再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。 2.电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2~0.4V电压(其电压与光照强度成正比)。 3.电流测量法将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。

(八)激光的检测

1.阻值测量法拆下激光二极管,用万用表R×1k或R×10k档测量其正、反向电阻值。正常时,正向电阻值为20~40kΩ之间,反向电阻值为∞(无穷大)。若测得正向电阻值已超过50kΩ,则说明激光二极管的性能已下降。若测得的正向电阻值大于90kΩ,则说明该二极管已严重老化,不能再使用了。 2.电流测量法用万用表测量激光二极管驱动电路中负载电阻两端的电压降,再根据欧姆定律估算出流过该管的电流值,当电流超过100mA时,若调节激光功率电位器(见图4-76),而电流无明显的变化,则可判断激光二极管严重老化。若电流剧增而失控,则说明激光二极管的光学谐振腔已损坏。

(九)变容的检测

1.正、负极的判别有的变容二极管的一端涂有黑色标记,这一端即是负极,而另一端为正极。还有的变容二极管的管壳两端分别涂有黄色环和红色环,红色环的一端为正极,黄色环的一端为负极。 也可以用数字万用表的二极管档,通过测量变容二极管的正、反向电压降来判断出其正、负极性。正常的变容二极管,在测量其正向电压降时,表的读数为0.58~0.65V;测量其反向电压降时,表的读数显示为溢出符号“1”。在测量正向电压降时,红表笔接的是变容二极管的正极,黑表笔接的是变容二极管的负极。 2.性能好坏的判断用指针式万用表的R×10k档测量变容二极管的正、反向电阻值。正常的变容二极管,其正、反向电阻值均为∞(无穷大)。若被测变容二极管的正、反向电阻值均有一定阻值或均为0,则是该二极管漏电或击穿损坏。

(十)双基极的检测

1.电极的判别将万用表置于R×1k档,用两表笔测量双基极二极管三个电极中任意两个电极间的正反向电阻值,会测出有两个电极之间的正、反向电阻值均为2~10kΩ,这两个电极即是基极B1和基极B2,另一个电极即是发射极E。再将黑表笔接发射极E,用红表笔依次去接触另外两个电极,一般会测出两个不同的电阻值。有阻值较小的一次测量中,红表笔接的是基极B2,另一个电极即是基极B1。 2.性能好坏的判断双基极二极管性能的好坏可以通过测量其各极间的电阻值是否正常来判断。用万用表R×1k档,将黑表笔接发射极E,红表笔依次接两个基极(B1和B2),正常时均应有几千欧至十几千欧的电阻值。再将红表笔接发射极E,黑表笔依次接两个基极,正常时阻值为无穷大。 双基极二极管两个基极(B1和B2)之间的正、反向电阻值均为2~10kΩ范围内,若测得某两极之间的电阻值与上述正常值相差较大时,则说明该二极管已损坏。

(十一)桥堆的检测

1.全桥的检测大多数的整流全桥上,均标注有“ ”、“-”、“~”符号(其中“ ”为整流后输出电压的正极,“-”为输出电压的负极,“~”为交流电压输入端),很容易确定出各电极。Rac电子资料网 检测时,可通过分别测量“ ”极与两个“~”极、“-”极与两个“~”之间各整流二极管的正、反向电阻值(与普通二极管的测量方法相同)是否正常,即可判断该全桥是否已损坏。若测得全桥内鞭只二极管的正、反向电阻值均为0或均为无穷大,则可判断该二极管已击穿或开路损坏。 2.半桥的检测半桥是由两只整流二极管组成,通过用万用表分别测量半桥内部的两只二极管的正、反电阻值是否正常,即可判断出该半桥是否正常。

(十二)高压硅堆检测

高压硅堆内部是由多只高压整流二极管(硅粒)串联组成,检测时,可用万用表的R×10k档测量其正、反向电阻值。正常的高压硅堆,其正向电阻值大于200kΩ,反向电阻值为无穷大。若测得其正、反向均有一定电阻值,则说明该高压硅堆已软击穿损坏。

(十三)变阻的检测

用万用表R×10k档测量变阻二极管的正、反向电阻值,正常的高频变阻二极管的正向电阻值(黑表笔接正极时)为4.5~6kΩ,反向电阻值为无穷大。若测得其正、反向电阻值均很小或均为无穷大,则说明被测变阻二极管已损坏。

(十四)肖特基的检测

二端型肖特基二极管可以用万用表R×1档测量。正常时,其正向电阻值(黑表笔接正极)为2.5~3.5Ω,投向电阻值为无穷大。若测得正、反电阻值均为无穷大或均接近0,则说明该二极管已开路或击穿损坏。 三端型肖特基二极管应先测出其公共端,判别出共阴对管,还是共阳对管,然后再分别测量两个二极管的正、反向电阻值。正向特性测试 把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。

反向特性测试

把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,二极管就是合格的。

部分常用二极管参数

05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW,

05Z7.5Y 硅稳压二极管 Vz=7.34~7.70V,Pzm=500mW,

05Z13X 硅稳压二极管 Vz=12.4~13.1V,Pzm=500mW,

05Z15Y 硅稳压二极管 Vz=14.4~15.15V,Pzm=500mW,

05Z18Y 硅稳压二极管 Vz=17.55~18.45V,Pzm=500mW,

1N4001 硅整流二极管 50V,1A,(Ir=5uA,Vf=1V,Ifs=50A)

1N4002 硅整流二极管 100V,1A,

1N4003 硅整流二极管 200V,1A,

1N4004 硅整流二极管 400V,1A,

1N4005 硅整流二极管 600V,1A,

1N4006 硅整流二极管 800V,1A,

1N4007 硅整流二极管 1000V,1A,

1N4148 二极管 75V,4PF,Ir=25nA,Vf=1V,

1N5391 硅整流二极管 50V,1.5A,(Ir=10uA,Vf=1.4V,Ifs=50A)

1N5392 硅整流二极管 100V,1.5A,

1N5393 硅整流二极管 200V,1.5A,

1N5394 硅整流二极管 300V,1.5A,

1N5395 硅整流二极管 400V,1.5A,

1N5396 硅整流二极管 500V,1.5A,

1N5397 硅整流二极管 600V,1.5A,

1N5398 硅整流二极管 800V,1.5A,

1N5399 硅整流二极管 1000V,1.5A,

1N5400 硅整流二极管 50V,3A,(Ir=5uA,Vf=1V,Ifs=150A)

1N5401 硅整流二极管 100V,3A,

1N5402 硅整流二极管 200V,3A,

1N5403 硅整流二极管 300V,3A,

1N5404 硅整流二极管 400V,3A,

1N5405 硅整流二极管 500V,3A,

1N5406 硅整流二极管 600V,3A,

1N5407 硅整流二极管 800V,3A,

1N5408 硅整流二极管 1000V,3A,

1S1553 硅开关二极管 70V,100mA,300mW,3.5PF,300ma,

1S1554 硅开关二极管 55V,100mA,300mW,3.5PF,300ma,

1S1555 硅开关二极管 35V,100mA,300mW,3.5PF,300ma,

1S2076 硅开关二极管 35V,150mA,250mW,8nS,3PF,450ma,Ir≤1uA,Vf≤0.8V,≤1.8PF,

1S2076A 硅开关二极管 70V,150mA,250mW,8nS,3PF,450ma,

60V,Ir≤1uA,Vf≤0.8V,≤1.8PF,

1S2471 硅开关二极管 80V,Ir≤0.5uA,Vf≤1.2V,≤2PF,

1S2471B 硅开关二极管 90V,150mA,250mW,3nS,3PF,450ma,

1S2471V 硅开关二极管 90V,130mA,300mW,4nS,2PF,400ma,

1S2472 硅开关二极管 50V,Ir≤0.5uA,Vf≤1.2V,≤2PF,

1S2473 硅开关二极管 35V,Ir≤0.5uA,Vf≤1.2V,≤3PF,

1S2473H 硅开关二极管 40V,150mA,300mW,4nS,3PF,450ma,

2AN1 二极管 5A,f=100KHz

2CK100 硅开关二极管 40V,150mA,300mW,4nS,3PF,450ma,

2CK101 硅开关二极管 70V,150mA,250mW,8nS,3PF,450ma,

2CK102 硅开关二极管 35V,150mA,250mW,8nS,3PF,450ma,

2CK103 硅开关二极管 20V,100mA,2PF,100ma,

2CK104 硅开关二极管 35V,100mA,10nS,2PF,225ma,

2CK105 硅开关二极管 35V,100mA,4nS,2PF,225ma,

2CK106 硅开关二极管 75V,100mA,4nS,2PF,100ma,

2CK107 硅开关二极管 90V,130mA,300mW,4nS,2PF,400ma,

2CK108 硅开关二极管 70V,100mA,300mW,3.5PF,300ma,

2CK109 硅开关二极管 35V,100mA,300mW,3.5PF,300ma,

2CK110 硅开关二极管 90V,150mA,250mW,3nS,3PF,450ma,

2CK111 硅开关二极管 55V,100mA,300mW,3.5PF,300ma,

2CK150 硅开关二极管 15V,Ir≤25nA,Vf≤1.2V,≤2PF,

2CK161 硅开关二极管 15V,Ir≤25nA,Vf≤1.2V,≤2PF,

2CK4148 硅开关二极管 75V,Ir≤25nA,Vf=1V,4PF,

2CK2076 硅开关二极管 35V,Ir≤1uA,Vf≤0.8V,≤1.8PF,

2CK2076A硅开关二极管 60V,Ir≤1uA,Vf≤0.8V,≤1.8PF,

2CK2471 硅开关二极管 80V,Ir≤0.5uA,Vf≤1.2V,≤2PF,

2CK2472 硅开关二极管 50V,Ir≤0.5uA,Vf≤1.2V,≤2PF,

2CK2473 硅开关二极管 35V,Ir≤0.5uA,Vf≤1.2V,≤3PF,

2CN1A 硅二极管 400V,1A,f=100KHz,

2CN1B 硅二极管 100V,1A,f=100KHz,

2CN3 硅二极管 V,1A,f=100KHz,

2CN3D 硅二极管 V,1A,f=100KHz,

2CN3E 硅二极管 V,1A,f=100KHz,

2CN3F 硅二极管 V,1A,f=100KHz,

2CN3G 硅二极管 V,1A,f=100KHz,

2CN3H 硅二极管 V,1A,f=100KHz,

2CN3I 硅二极管 V,1A,f=100KHz,

2CN3K 硅二极管 V,1A,f=100KHz,

2CN4D 硅二极管 V,1.5A,f=100KHz,

2CN5D 硅二极管 V,1.5A,f=100KHz,

2CN6 硅二极管 V,1A,f=100KHz,

2CP1553 硅二极管 Ir≤0.5uA,Vf≤1.4V,≤3.5PF,

2CP1554 硅二极管 Ir≤0.5uA,Vf≤1.4V,≤3.5PF,

2CP1555 硅二极管 Ir≤0.5uA,Vf≤1.4V,≤3.5PF,

2CW1 硅稳压二极管 Vz=7.0~8.8V,Pzm=280mW,

2CW2 硅稳压二极管 Vz=8.5~9.5V,Pzm=280mW,

2CW3 硅稳压二极管 Vz=9.2~10.5V,Pzm=280mW,

2CW4 硅稳压二极管 Vz=10.0~11.8V,Pzm=280mW,

2CW5 硅稳压二极管 Vz=11.5~12.5V,Pzm=280mW,

2CW5 硅稳压二极管 Vz=12.2~14V,Pzm=280mW,

2CW9 硅稳压二极管 Vz=1.0~2.8V,Pzm=250mW,

2CW10 硅稳压二极管 Vz=2.5~3.5V,Pzm=250mW,

2CW11 硅稳压二极管 Vz=3.2~4.5V,Pzm=250mW,

2CW12 硅稳压二极管 Vz=4.0~5.8V,Pzm=250mW,

2CW13 硅稳压二极管 Vz=5.5~6.5V,Pzm=250mW,

二极管相关专业术语:

1.Freewheel diode续流二极管
2.Esaki diode隧道二极管;江崎二极管
3.PIN diode PIN型二极管
4.Schottky diode肖特基二极管
5.Schottky barrier double rectifier diode萧特基势垒双整流二极管
6.Zener diode齐纳二极管
7.backward diode逆向二极管
8.avalanche photo diode (APD)雪崩光电二极管
9.blocking diode阻塞二极管
10.capacitor, diode二极管电容器
11.clamp diode钳位二极管
12.common-cathode double diode共阴极双二极管
13.crystal diode晶体二极管
14.diode-transistor logic (DTL)二极管晶体管逻辑
15.diode, varicap变容二极管
16.diode, tunnel隧道二极管
17.diode, transient suppression瞬变抑制二极管
18.diode, resistor-capacitor (RCD)电阻器电容器二极管
19.diode, rectifier整流二极管
20.diode, parasitic寄生二极管
*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读