改造前生产工艺复杂, 产品质量不稳定, 既浪费人力又浪费电能。改造后的整个工艺流程全部采用智能化控制系统, 整个控制系统以可编程序控制器和触摸屏组成, 系统设备的主要工艺参数均可在触摸屏画面上设定、 修改, 可编程序控制器根据设定的工艺参数完成系统控制过程。设备操作者完成挤出速度、 加热温度、 收线张力参数设定后, 即可启动系统正常运行 。
改造前的生产工艺流程
(1)导体经放线架由 SJ65挤塑机在导体表面挤包耐火内保护层, 经履带牵引机牵引将电缆绕入电缆盘。(2)将挤包完耐火内保护层的电缆经放线架由SJ150 挤塑机在耐火内保护层表面挤包绝缘层, 经履带牵引机牵引将电缆绕入电缆盘。(3)将挤包完绝缘层的电缆经放线架由 SJ90挤塑机在绝缘层表面挤包阻燃外保护层, 经履带牵引机牵引将电缆绕入电缆盘。(4)将经以上 3道工序生产的电缆送进高温硫化房进行高温硫化, 硫化结束将电缆取出进行冷却后转入下道工序。高温硫化房由金属外壳构成, 直径4 m, 内部四周全部由加热管构成, 功率为 375 kW,能源消耗大 。
改造后的智能化共挤连续硫化生产工艺流程
导体经放线架通过转向轮及夹线器进入储线器, 出储线器后通过转向轮进入包带牵引机, 包带牵引轮外部有 2层胶带, 把导体线芯压住, 通过调节器调节气缸内的压力大小使 2层皮带夹紧力发生变化,保证有足够的牵引力, 用 2层胶带夹线能避免线芯外表面被碰伤, 确保了电缆的质量, 导体经牵引机进入异型精密共挤模头。导体穿过异型精密共挤模头时, 由 SJ65挤塑机先挤导体耐火保护层, 再由 SJ150挤塑机挤绝缘层, 最后由 SJ90挤塑机挤阻燃保护层,实现一次共挤过程。挤塑和收线部分均采用先进节能的变频控制, 该装置是使用微处理机进行数字控制的高精度交流调速器, 控制功能主要靠软件。导体从模头出来后, 直接进入上封闭器, 再进入加热段, 加热段由 6节管组成, 每节管由干式变压器短路加热, 分 6个温度控制区, 每节管由导电板、铝排、 绝缘管、 吊架及干式变压器等组成。加热温度设定由工艺要求给出, 加热也由快速加热到设定温度仪表控制, 停止加热后, 立即转入保温加热。根据生产工艺要求, 调节各区的温度, 所有工艺参数均在触摸屏画面上设定、 修改。使电缆充分硫化, 确保了电缆的质量 。
加热段中间为悬垂控制器, 悬垂控制器主要是通过本身的电信号来调节牵引机速度, 使之与牵引机同步, 保证电缆悬浮在管路中间, 在没进入冷却段前, 防止挤包电缆脱管划伤。电缆线从加热段出来后进入隔离段, 隔离段上有继电器控制的放气阀, 目的是把水蒸气排放出去, 避免水蒸气进入加热段, 同时隔离段还能把电缆慢慢冷却下来, 防止突然冷却产生水珠和由于电缆绝缘层骤冷而产生的热应力, 确保电缆质量及使用寿命 。
电缆出隔离段后进入冷却段, 电缆与水交换热量, 达到冷却的目的, 再通过下封闭器进入履带牵引机, 通过调节压胶带气缸力的大小, 使履带牵引机的牵引力发生变化, 通过悬垂控制器给的信号,调节直流电动机转数, 从而使履带牵引机的速度与包带牵引机同步。由下牵引机出来进入张力调节器, 张力调节器是调节收线快慢的机构。最后到收线, 线盘缠满线后下盘, 转入下道工序。管道装置集预热、 加热、 干燥、 冷却于一体, 结构紧凑, 自动化程度高, 热效率明显提高, 加热功率自动跟踪出线速度, 节能效果十分明显, 整个生产过程全部智能化控制。
技术经济分析
原工艺流程用电设备总容量 1 416 kW, 年用电量 326.25万 kWh。改造后的智能化 3 层共挤连续硫化生产工艺流程所用的电能设备总容量 812 kW, 比改造前减少604 kW, 年用电量 187.08 万 kWh, 比改造前节约电量 139.17万 kWh, 整个改造投资 185万元。按每天开机12 h, 年开机320 d, 全年开机3 840 h,电价 0.68元/kWh计算, 因加热达到工艺温度后就自动停止加热, 根据平常机台数据积累, 加热时间约为工作时间的 60%。 改造前用电量: 1 416 kW×3 840 h×60%=326.25万 kWh; 改造后用电量: 812 kW × 3 840 h × 60% =187.08 万 kWh; 年节电量: 326.25 万 kWh-187.08 万kWh=139.17 万 kWh; 年节约电费: 139.17 万 kWh×0.68 元/kWh=94.64 万元; 节约电力 604 kW; 节电率42.6%; 投资回收期 24个月 。
改造后的生产工艺较改造前相对简单, 产品质量稳定, 能耗小, 节约了大量的电能, 节电率达40%。工艺采用了连续化作业 , 提高了产量, 同时减少了半成品搬运, 节省了大量的人力及周转时间。生产线比改造前占地减少, 节约了大量的财力 。