造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

实时频谱分析仪特性

2018/06/19285 作者:佚名
导读: 实时频谱分析仪普遍采用快速傅里叶变换(FFT)来实现频谱测量。FFT技术并不是实时频谱仪的专利,其在传统的扫频式频谱仪上亦有所应用。但是实时频谱仪所采用的FFT技术与之相比有着许多不同之处,同时其测量方式和显示结果也有所不同:高速测量:频谱仪分析仪的信号处理过程主要包括两步,即数据采样和信号处理。实时频谱仪为了保证信号不丢失,其信号处理速度需要高于采样速度。恒定的处理速度:为了保证信号处理的

实时频谱分析仪普遍采用快速傅里叶变换(FFT)来实现频谱测量。FFT技术并不是实时频谱仪的专利,其在传统的扫频式频谱仪上亦有所应用。但是实时频谱仪所采用的FFT技术与之相比有着许多不同之处,同时其测量方式和显示结果也有所不同:

高速测量:频谱仪分析仪的信号处理过程主要包括两步,即数据采样和信号处理。实时频谱仪为了保证信号不丢失,其信号处理速度需要高于采样速度。恒定的处理速度:为了保证信号处理的连续性和实时性,实时频谱仪的处理速度必须保持恒定。传统频谱仪的FFT计算在CPU中进行,容易受到计算机中其它程序和任务的干扰。实时频谱仪普遍采用专用FPGA进行FFT计算,这样的硬件实现既可以保证高速性,又可以保证速度稳定性。频率模板触发(Frequency Mask Trigger):FMT是实时频谱仪的主要特性之一,它能够根据特定频谱分量大小作为触发条件,从而帮助工程师观察特定时刻的信号形态。传统的扫频式频谱仪和矢量信号分析仪一般只具备功率或者电平触发,不能根据特定频谱的出现情况触发测量,因此对转瞬即逝的偶发信号无能为力。因此传统扫频频谱仪和实时频谱分析仪各自有着自己的应用场景。丰富的显示功能:传统频谱仪的显示专注在频率和幅度的二维显示,只能观察到测量时刻的频谱曲线。而实时频谱仪普遍具备时间,频率,幅度的三维显示,甚至支持数字余辉和频谱密度显示,从而帮助测试者观察到信号的前后变化及长时间统计结果。
*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读