这种失真较少为人知道和提及,它不但和放大器线路有关,而且和音箱也有很大关系。因此在介绍这两项指标前,应先了解音箱有关这方面的特性。目前的音箱所用的单元绝大部分是采用动圈式喇叭,其主要结构包括有一个产生磁场的永久磁铁和一个音圈,严格来说动圈式喇叭属于一种特殊的直流马达,只不过音圈只需要的是直上直下的来回活动而不是旋转。
不管是交流马达或是直流马达都有可逆性的,也就是讲在某种条件下它们能充当发电机,直流马达其实在结构上和直流发电机没有什么区别,永磁式直流马达的转轴转动,就能在接线端上产生出一定的电压,同理,动圈式喇叭的振膜运动时就会在接线端上产生电压,电压的大小与运动的速度和幅度有关。
由于非线性化和损耗的关系,扬声器不能对放大器输出的全部电能加以利用,因此会有剩余电能产生,当放大器输出的电能无法全部转变为机械能量时,多余的电能必定会在扬声器音圈中产生出额外的反电动势(Back emf),这个反电动势会由喇叭线反馈到放大器的输出端,然后根据放大器内阻的大小形成一个电压,这个电压会被负反馈线路反馈到输入端,和输入信号打成一片,使中低频声音混浊,此时的分析力和层次感会大大减弱。这时产生的问题称为界面互调失真。
另外由于振膜的机械惯性原因,在音圈中也会产生多余电能,这会使扬声器的低频控制力变差。解决方法
界面互调失真和喇叭内阻和负反馈线路有关。
降低负反馈量和放大器内阻(即提高阻尼系数),能减少界面互调失真的影响,同时Bi-Wird双线接驳也是另一种改善方法,因为高低音分开传输能使低频的反电动势不能对高频信号产生影响,从而有效改善地音质,这也是为什么我们在双线接驳的系统上听到的音质更清晰一些的缘故。