造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

射频与微波晶体管功率放大器工程目录

2018/06/1972 作者:佚名
导读: 前言第一章 绪论§1-1 现代数字通信体制的特点§1-1-1 功率放大器在无线通信系统中的地位§1-1-2 功率放大器波形质量的测量§1-1-3 功率效率的测量§1-1-4 功放线性化技术和效率提高技术§1-2 射频与微波固体功率放大器的特点§1-3 射频和微波功率放大器的分析方法综述§1-3-1 线性近似化理论§1-3-2 弱非线性器件的分析方法§1-3-3 强非线性效应下的近似分析法§1

前言

第一章 绪论

§1-1 现代数字通信体制的特点

§1-1-1 功率放大器在无线通信系统中的地位

§1-1-2 功率放大器波形质量的测量

§1-1-3 功率效率的测量

§1-1-4 功放线性化技术和效率提高技术

§1-2 射频与微波固体功率放大器的特点

§1-3 射频和微波功率放大器的分析方法综述

§1-3-1 线性近似化理论

§1-3-2 弱非线性器件的分析方法

§1-3-3 强非线性效应下的近似分析法

§1-3-4 计算机辅助设计(CAD)和非线性器件模型

§1-3-5 负载牵引设计法

§1-4 射频和微波固体功率放大器中的新颖技术

§1-4-1 功率放大器的线性化技术

§1-4-2 效率及线性化增强技术

第二章 射频和微波晶体管功率放大器基础

§2-1 射频和微波功率晶体管的直流参数和功能参数

§2-1-1 直流参数

§2-1-2 极限参数和热特性

§2-1-3 功率晶体管的功能特性

§2-1-4 低功率晶体管的功能特性

§2-1-5 线性模块的功能特性

§2-1-6 功率模块的功能性特

§2-2 射频和微波晶体管应用基础

§2-2-1 低功率晶体管的选择

§2-2-2 高功率晶体管的选择

§2-2-3 晶体管选择时的带宽考虑

§2-2-4 MOSFET与双极晶体管的选择

§2-2-5 选择功率晶体管其他考虑因素

§2-3 FET和双极晶体管的参数和电路比较

§2-3-1 晶体管类型

§2-3-2 参数的比较

§2-3-3 电路组态

§2-4 影响功率放大器设计的其他因素

§2-4-1 工作类别

§2-4-2 调制类型

§2-4-3 线性工作偏置的考虑

§2-4-4 脉冲模式工作的晶体管

§2-5 LDMOS功率晶体管及他们的应用

§2-5-1 LDMOSFET与垂直MOSFET的比较

§2-5-2 LDMOS器件设计

§2-5-3 LDMOS的特性

§2-5-4 FET的一些近似设计考虑

§2-5-5 LDMOS晶体管在现代移动蜂窝技术中的应用

§2-5-6 射频功率放大器的特性

§2-5-7 线性度考虑

§2-5-8 W-CDMA功率放大器设计实际例子

§2-5-9 CDMA放大器设计和优化的电路技术

§2-5-10 LDMOS晶体管的模型

§2-6 射频和微波功率放大器的附加电路

§2-6-1 固体功率放大器的VSWR保护

§2-6-2 功率放大器的负载失配量的"在线"测试电路

§2-6-3 输出滤波

§2-7 宽带阻抗匹配的基本概念

§2-7-1 宽带电路介绍

§2-7-2 传统的RF变压器阻抗变换器

§2-7-3 绞线RF变压器阻抗变换器

§2-7-4 传输线RF变压器阻抗变换器

§2-7-5 等延迟传输线RF变压器阻抗变换器

§2-8 射频和微波功率放大器的总体设计思想

§2-8-1 单端、平衡(并联)或者推挽功率放大器

§2-8-2 单端RF功率放大器设计思想

§2-8-3 双极晶体管并联功率放大器

§2-8-4 MOSFET晶体管并联功率放大器

§2-8-5 推挽功率放大器

§2-8-6 功率晶体管的阻抗和放大器的匹配网络

§2-8-7 功率放大器系统的级间匹配电路

§2-8-8 单级设计的实际例子

§2-9 计算机辅助设计程序

§2-9-1 概况

§2-9-2 Motorola阻抗匹配程序的内部

第三章 射频和微波功率放大器的结构技术及可靠性技术

§3-1 RF功率晶体管的封装类型

§3-2 封装对发射极/源极阻抗的影响

§3-3 射频和微波功率放大器印刷电路板的布局

§3-4 射频和微波元器件安排

§3-4-1 高功率晶体管的安装

§3-4-2 低功率晶体管的安装

§3-4-3 射频功率模块的安装

§3-5 射频和微波功率放大器的可靠性考虑

§3-5-1 芯片温度和他对可靠性的影响

§3-5-2 其他可靠性考虑

第四章 线性功率放大器的设计和功率放大器的线性化技术

§4-1 非线性电路基本概念与定义

§4-1-1 线性与非线性

§4-1-2 频率的产生

§4-1-3 非线性现象

§4-1-4 放大器中的非线性现象

§4-2 线性晶体管功率放大器的设计

§4-2-1 A类放大器和线性放大

§4-2-2 增益匹配和功率匹配

§4-2-3 负载牵引测量

§4-2-4 商用负载牵引测量设备

§4-2-5 负载线理论

§4-2-6 封装效应和负载牵引理论

§4-2-7 用CAD程序作负载牵引等功率

§4-2-8 A类功率放大器设计的实际例子

§4-2-9 总结

§4-3 功率放大器的线性化技术

§4-3-1 负反馈线性化技术

§4-3-2 预失真技术

§4-3-3 前馈技术

第五章 高效率射频和微波固体功率放大器设计

§5-1 功率放大器减小导通角的波形分析

§5-2 功率放大器输出端口

§5-3 减小导通角工作模式分析

§5-3-1 A类工作条件

§5-3-2 AB类工作条件

§5-3-3 B类工作状态

§5-3-4 C类工作状态

§5-3-5 晶体管的开启(膝)电压的影响

§5-3-6 功率转移特性和线性度

§5-3-7 对输入驱动的要求

§5-3-8 本节小结

§5-4 降低导通角高效率功率放大器的匹配网络的设计

§5-4-1 低通匹配网络

§5-4-2 传输线网络

§5-4-3 谐波短路

§5-4-4普通的的MESFET晶体管

§5-4-5 850MHz 2W B类功率放大器设计实例

§5-4-6 "π"型功率匹配网络

§5-4-7 功率放大器中的"π"型匹配网络设计和分析

§5-4-8 使用负载牵引法的网络设计和分析

§5-5 射频和微波功率放大器中的过驱动和限制效应

§5-5-1 过驱动A类功率放大器

§5-5-2 过驱动减小导通角模式的功率放大器

§5-5-3 正弦波的矩形化:F类和D类工作状态

§5-5-4 实际的F类功率放大器

§5-5-5 具有谐波短路的过驱动功率放大器

§5-6 射频应用的开关模式放大器

§5-6-1 简单的(射频应用)开关模式放大器

§5-6-2 调谐开关模功率放大器

§5-6-3 D类开关模功率放大器

§5-6-4 E类开关模功率放大器

第六章 射频和微波功率放大器的电路技术

§6-1 推挽放大器

§6-2 平衡功率放大器

§6-3 射频和微波功率放大器中的频率补偿和负反馈

§6-3-1 频率补偿

§6-3-2 负反馈

第七章 功率合成与分配技术

§7-1 概述

§7-1-1 合成概念的演变

§7-1-2 合成的基本原理

§7-1-3 合成的网络特性

§7-2 功率合成器/分配器的类型

§7-2-1 谐振和非谐振腔体合成器/功分器

§7-2-2 非谐振的N路合成器

§7-2-3 空间功率合成器

§7-3 功率合成器/分配器的分析方法

§7-3-1 传输线合成器的分析

§7-3-2 平面二维功率合成结构的分析

§7-3-3 波导和腔体合成器的分析

§7-3-4 空间功率合成结构的分析

§7-4 常规功率分配与合成技术

§7-4-1 Wilkinson 功率分配器

§7-4-2 耦合线定向耦合器

§7-4-3 微波混合桥

§7-4-4 同轴电缆变换器和合成器

§7-4-5 平行耦合线(双绞线)及同轴线阻抗变换器和平衡-不平衡变换器

§7-5 新型功率分配与合成技术

§7-5-1 基于DGS结构的不等分功率合成技术

§7-5-2 基于多层结构的小型化超宽带合成技术

§7-5-3 任意双频段功分与合成技术

§7-6 空间功率合成技术

§7-6-1 概述

§7-6-2 扩展同轴波导内空间功率合成技术

§7-6-3 径向波导空间功率合成技术

§7-6-4 基片集成波导空间功率合成技术

§7-7 大功率合成技术简介

§7-7-1 传输线的功率容量

§7-7-2 大功率合成器的设计实例

§7-8 小结

第八章 射频和微波功率放大器中的记忆效应和失真

§8-1 介绍

§8-1-1 本章的目的

§8-1-2 线性化和记忆效应

§8-1-3 本章的主要内容

§8-2 电路理论和方法

§8-2-1 电系统的分类

§8-2-2 非线性系统的频谱计算

§8-2-3 无记忆非线性系统中的频谱再生

§8-2-4 非线性效应与信号带宽的关系

§8-2-5 非线性系统分析

§8-2-6 小结

§8-2-7 需记住的要点

§8-3 射频功率放大器中的记忆效应

§8-3-1 效率

§8-3-2 线性化

§8-3-3 电记忆效应

§8-3-4 热记忆效应

§8-3-5 幅度域效应

§8-3-6 总结

§8-3-7 记忆要点

§8-4 Volterra模型

§8-4-1 非线性建模

§8-4-2 非线性I-V和Q-V特性

§8-4-3 共射BJT/HBT模型

§8-4-4 在BJT共射放大器中的IM3

§8-4-5 MESFET建模及分析

§8-4-6 小结

§8-4-7 记忆要点

§8-5 Volterra模型的特性描述

§8-5-1 拟合多项式模型

§8-5-2 自热效应

§8-5-3 直流I-V 特性

§8-5-4 交流特性描述步骤

§8-5-5 脉冲S-参数测量

§8-5-6 封装效应的去除

§8-5-7 小信号参数的计算

§8-5-8 拟合法交流测量

§8-5-9 1-W BJT的非线性模型

§8-5-10 1-W MESFET 的非线性模型

§8-5-11 30-W LDMOS的非线性模型

§8-5-12 小结

§8-5-13 记忆要点

§8-6 仿真及测量记忆效应

§8-6-1 仿真记忆效应

§8-6-2 记忆效应的测量

§8-6-3 记忆效应与线性化

§8-6-4 小结

§8-6-5 记忆要点

§8-7 记忆效应的抵消

§8-7-1 包络滤波法

§8-7-2 阻抗优化

§8-7-3 包络注入

§8-7-4 小结

§8-7-5 记忆要点

附录7A: Volterra 分析基础

附录7B: 截断误差

附录7C:平方非线性级联时的IM3公式

附录7D: 测量系统的有关问题

第九章 异相射频与微波功率放大器

§9-1异相微波功率放大器的介绍

§9-1-1 从历史角度来看异相放大器

§9-1-2 异相放大理论的介绍

§9-2 反相功率放大系统的线性性能

§9-2-1介绍

§9-2-2 数字调制技术

§9-2-3 数字数据的基带滤波

§9-2-4 异相放大器信号分量的分离

§9-2-5 路径不均衡和他对线性度的影响

§9-2-6 正交调制器误差对线性度的影响

§9-2-7 SCS量化误差对于异相系统的影响

§9-2-8 重构滤波器和DSP抽样率对线性度影响

§9-2-9总结

§9-3 异相放大器中降低路径失配的技术

§9-3-1 简介

§9-3-2 基于训练矢量的改进方法

§9-3-3 数据传输中路径失配误差的校正方案

§9-3-4 宽带应用中的失配校正方法

§9-3-5 VCO驱动合成

§9-4 异相功率放大器中的功率合成及效率增强技术

§9-4-1 介绍

§9-4-2 异相放大器中的功率合成技术

§9-4-3 异相系统的放大器选择

§9-4-4 利用A、B、C类放大器设计异相放大器

§9-4-5 Chireix功率合成技术

§9-4-6 开关模式放大器(D类和E类)的功率合成器的设计

§9-4-7 在异相功率放大器中使用有损耗的功率合成器

§9-4-8 输出功率的概率分布及其对效率带来的影响

§9-4-9 异相放大器中的功率回收

附录9A

9A.1 混合型功率合成器输出的资用功率

9A.2 任意二极管模型的回收效率和电压驻波比

第十章 通信系统中的功率放大器

§10-1 Kahn包络分离和恢复技术

§10-2 包络跟踪

§10-3 异相功率放大器

§10-4 Doherty功率放大器方案

§10-5 开关模和双途径功率放大器

§10-6 前馈线性化技术

§10-7 预失真线性化(技术)

§10-8 手持机应用的单片CMOS和HBT功率放大器

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读