1855年发表《论法拉第力线》,他以一种几何观点,为法拉第的力线作出了数学描绘。他在文章中写到:“如果人们从任意一点画一条线,并且当人们沿这条线走时,线上任一点的方向,总是和该点力的方向重合,那么这条曲线就表示他所通过的各点的合力的方向,并且在这个意义上才称为力线。用同样的方法人们可以画出其它力线。直到曲线充满整个空间以表示任一指定点的方向。”这样,力线的切线方向就是电场力的方向,力线的密度表示电场力的大小。
麦克斯韦用类比的方法,把力线看作不可压缩的流体的流线。由此他把力线、力管等与流体力学的理论做比较,如把正、负电荷比作流体的源和汇,电力线比作流管,电场强度比作流速等,引入一种新的矢量函数来描述电磁场。可以说把法拉第的物理翻译成了数学。在文章中,麦可斯韦导出了电流四周的磁力线和磁力之间的关系,表示描述电流和磁力线的一些物理量之间的定量关系的矢量微分方程,以及电流间作用力和电磁感应定律的定量公式。当法拉第看到麦可斯韦的文章后赞叹到:“我惊讶的看到,这个主题居然处理的如此之好!”
1860年,70岁的法拉第和30岁的年轻人麦克斯韦见面了,建立电磁理论的共同心愿超越了年龄的鸿沟,法拉第对麦克斯说:“你不要停留在用数学来解释我的观点上,而应该突破它。”
1862年,麦可斯韦发表了第二篇电磁学论文《论物理力线》。麦克斯韦引进了一种媒质的理论,提出了电磁以太模型,把电学量和磁学量之间的关系,形象的表现出来。这种模型理论中,充满空间的媒质在磁作用下具有旋转的性质,即给排列着的许多分子涡旋,它们以磁力线为轴形成涡旋管,涡旋管转动的角速度正比于磁场强度H,涡旋媒质的密度正比于媒质磁导率μ。涡旋管旋转的离心效应,使管在横向扩张,同时产生纵向收缩。
涡旋管旋转的离心效应,使管在横向扩张,同时产生纵向收缩。因此磁力线在纵向表现为张力,即异性磁极的吸引;在横向表现为压力,即同性磁极的排斥。
由于相互紧密连接的涡旋管的表面是沿相反方向运动的,为了互不妨碍对方的运动,麦可斯韦设想在相临涡旋管之间充满着一层起惰性或滚珠轴承作用的微小粒子。它们是些远比涡旋的线度小、质量可以忽略的带电粒子。粒子和涡旋的作用是切向的。粒子可以滚动,但没有滑动;在均匀恒定磁场,即每个涡旋管转动速度相同的情况下,这些粒子只绕自身的轴自转,但当两侧涡旋管转速不同时,粒子的中心则以两侧涡旋边缘运动的差异情况而运动。对于非均匀磁场,即随位置不同磁力的强度不同,因而涡旋管的转速也不同的情况,涡旋管间的粒子则发生移动。根据涡旋理论,单位时间通过单位面积的粒子数即涡旋的流量j与涡旋管旋转的切线速度H的旋度成正比,即:此处j 对应于电流,H 对应于磁场,此方程即为电磁场的运动方程。它说明电粒子的运动必然伴随分子的磁涡旋运动,这也就是电流产生磁力线的类比机制。对于磁场随时间变化的情况,涡旋运动的能量变化(因H变化)必然受到来自粒子层切向运动的力,这个力E满足关系:其中"_blank" href="/item/电动势">电动势。它说明磁介质中不稳定的磁涡旋运动,必引起电的运动,产生感应电动势,从而产生电流。此式为电磁场的动力学方程。
“位移电流”的提出:在论文第三部分,麦克斯韦把涡旋模型推广到静电现象。由于H=0,所以媒质由具有弹性的静止的涡旋管和粒子层组成。当媒质处于电场中时,粒子层将受到电力E的作用而发生位移,并给涡旋管以切向力使之发生形变。形变的涡旋管则因内部的弹性张力而对粒子层施以大小相等方向相反的作用力,当两力平衡时,粒子处于静止状态。这时电场能在媒质中转变为弹性势能。
对于绝缘介质, 麦克斯韦进一步假设:受到电力作用的绝缘介质,它的粒子将处于极化状态,虽然粒子不能自由运动,但电力对整个介质的影响是引起电在一定方向上的一个总位移D。当电场发生变化的时候,粒子的总位移D也跟着发生变化,从而形成正负方向上的电流。这就是说,电位移对时间的微商"_blank" href="/item/麦克斯韦理论">麦克斯韦理论中重要的“位移电流”假设。
麦克斯韦利用他所构造的电磁以太力学模型。不仅说明了法拉第磁力线的应用性质,还建立了全部主要电磁现象之间的联系;但麦克斯韦清楚的认识到上述模型的暂时性,他仅仅把他看做是一个“力学上可以想象和便于研究的适宜于揭示已知电磁现象之间真实的力学联系”的模型。所以在1864~1865年的论文《电磁场的动力学理论》中,他完全放弃了这个模型,去掉了关于媒质结构的假设,只以几个基本的实验事实为基础,以场论的观点对自己的理论进行了重建。
他说“我所提出的理论可以称为电磁场理论,因为它必须涉及到带电体和磁性物质周围的空间;它也可以叫做动力学理论,因为它假定在该空间存在着正在运动的物质,从而才产生了人们所观察到的电磁现象。”“电磁场就是处于电磁状态的物体周围的空间,包括这些物体本身在内:场中可以只有某种物质,也可以抽成没有宏观物质的空间,象盖斯勒管或其它叫真空的情形那样”。麦克斯韦假设真空中虽没有“宏观物质”存在,但有以太媒质。这种以太媒质充满整个空间,渗透物体内部,具有能量密度,并能以有限速度传播电磁作用。
1873年,麦克斯韦出版《电磁学通论》,他不仅用数学理论发展了法拉第的思想,还创造性的建立了电磁场理论的完整体系。在这本书中,他的思想得到更完善的发展和更系统的陈述。他把以前的电磁场理论都综合在一组方程式中,得到了电磁场的数学方程-----麦克斯韦电磁方程组。以简洁的数学结构,揭示了电场和磁场内在的完美对称。《电磁学通论》是人类第一个有关经典场论的不朽之作。最初,在《电磁学通论》书中,麦克斯韦共列出了20个分量方程,如果采用矢量方程,则仅有8个。后来简化成四个。1890年前后,德国物理学家赫兹和英国物理学家亥维赛,又两次简化麦克斯韦方程组,才得到人们通用的微分形式。
麦克斯韦方程组的一个重要结果,就是预言了电磁波的存在。麦克斯韦通过计算,从方程组中导出了自由空间中电场强度E和磁感应强度B的波动方程表示:电或磁的扰动,将在以太媒质里以速度c传播着。并且推出了电磁波的传播速度为:31.074万公里/秒,式中ε是介电常数,μ为磁导率。
光波就是电磁波
麦克斯韦发现这个值与1849年斐索测得的光速31.50万公里/秒十分接近。他认为这不是巧合,而是由于光的本质与电磁波相同,从而提出了光的电磁理论。它表明“光本身乃是以波的形式在电磁场中按电磁规律传播的一种电磁振动” 。从而将电、磁、光理论进行了一次伟大的综合。
麦克斯韦说:“把数学分析和实验研究联合使用所得到的物理知识,比之一个单纯实验人员或单纯的数学家能具有的知识更坚实,有益和巩固”。