车辆宽高的超限检测
采用激光传感器进行快速测量,利用PC工控机和可视化编程软件VB的网络内核与传感器进行数据的实时传输及处理,同时还设计了界面友好的上位机控制软件。现场试验数据表明,该系统实时性好、测量精度高,具有一定的实用价值。
高速公路收费站
用于高速公路收费站,以进行车辆的计数及安全保护。马来西亚Teras公司就已将上百套BEA激光传感器应用于其手动和自动收费站系统。激光传感器采用飞行时间(TOF)测量原理,可在检测区域内形成4个平面,以对车辆进行检测,同时,该产品还具有防追尾、车辆安全保护等功能。激光传感器较之传统光幕具有灵敏度高、精确性高、安装方便、性价比高、稳定性强等优势。
谷歌第二代无人车:配备激光传感器
谷歌第二代无人驾驶车原型车除了顶部的激光传感器依然相当明显,其他传感器都设置得非常隐蔽。
车辆的前后方和两侧都贴有明显的谷歌无人车标志。谷歌无人车的控制驾驶原理是通过车子四周安装的诸多传感器,持续不断地收集车辆本身以及四周的各种精确数据,通过车内的处理器进行分析和运算,再根据计算结果来控制车子行驶。无人车会借助GPS设备与传感器,精准定位车辆位置以及前行速度,判断周围的行人、车辆、自行车、信号灯以及诸多其他物体。
在这辆雷克萨斯的车顶带有一个360°旋转的激光全息传感器,可以几乎同时感应到车子前、侧与后方的状况。传感器收集的数据会通过绿色的数据线,输入到位于车辆右后侧的处理器中。这个激光传感器也可以让无人车进行全球精准定位。车前原本L型的雷克萨斯车标也被拆除,取而代之的是一个雷达传感器;用于测量前方距离以及车辆速度,以便判别前方车况,控制车辆安全加速与减速。
车胎轮毂上也带有位置传感器,用于探测车轮转动,帮助车辆进行定位。谷歌无人车的心脏--处理器位于车辆的右后侧,来自各个传感器的数据信息都会通过数据导线传输到这里,通过软件进行分析和处理,以便精确传感与判断无人车附近的不同物体。除了分析和判断无人车周围物体当前的位置,无人车还需要通过软件进行计算,准确预判每个物体可能的下一步位置。最后无人车会根据所有收集的数据做出安全驾驶的决策,包括控制车速以及周围车距。