反馈控制部分是相干合成系统中的核心,用于同步监测相干合成系统的作用效果,并根据情况做出实时的校正,使系统始终处于最优化状态。适用于相干合成的主动锁相方法主要有外差法、多抖动法、优化算法、峰值比例算法和条纹提取算法等多种,本节主要针对多抖动法和 SPGD 法进行讨论,为了避免引入复杂的问题,相关实验均在瓦量级功率水平下进行。
多抖动法相干合成
多抖动法最早是用于自适应光学的一种控制方法。2000 年,美国 HRL 实验室首次采用该方法实现了五路光纤放大器的相干合成。2006 年,M. Shay 等人改进了相位调制方式,实现了 9 路光束的相干合成,输出总功率达到百瓦量级。本节将通过描述低功率条件下基于多抖动法的板条激光放大器相干合成实验情况,初步介绍相干合成实验的现象及基本分析方法。
多抖动法相干合成原理
多抖动法的基本原理类似于调相(PM)收音机,它首先对参与合成的各路光束进行不同频率的高频小幅相位调制,即提供载波;各光束的相位误差则相当于施加在载波上的调制信号;合成后测量多光束的干涉引起的强度起伏,再利用与载波同频信号进行相关处理,即进行解调;就可以提取出的各光束相位误差并加以处理产生控制信号对各路光束的相位进行校正,实现锁相输出。
高光束质量、单频、线偏种子光经过分束,再通过相位调制器之后入射各单元激光放大链路;各单元输出激光经合束拼接后由一高反镜发射,部分激光透射,作为采样光来产生控制信号;系统中控制电路起两个作用,一是生成高频小幅载波信号(调制),二是根据探测系统反馈的信息计算补偿信号(解调),并将解调的相位信息与载波信号一起作用于相位调制器。