入射光与介质的分子运动间相互作用而引起的频率发生改变的散射。1928年C.拉曼在液体和气体中观察到散射光频率发生改变的现象,称拉曼效应或拉曼散射。拉曼散射遵守如下规律:散射光中在原始入射谱线(频率为ω0)两侧对称地伴有频率为ω0±ωi(i=1,2,3,…)的一组谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线,统称拉曼谱线;频率差ωi与入射光频率ω0无关,仅由散射物质的性质决定。每种物质都有自己特有的拉曼谱线,常与物质的红外吸收谱相吻合。在经典理论的解释中,介质分子以固有频率ωi振动,与频率为ω0的入射光耦合后产生ω0、ω0-ωi和ω0+ωi三种频率的振动,频率为ω0的振动辐射瑞利散射光,后两种频率对应斯托克斯线和反斯托克斯线。拉曼散射的诠释需用量子力学,不仅可解释散射光的频移,还能解决诸如强度和偏振等问题。
按量子力学,晶体中原子的固有振动能量是量子化的,所有原子振动形成的格波也是量子化的,称为声子。拉曼散射和布里渊散射都是入射光子与声子的非弹性碰撞结果。晶格振动分频率较高的光学支和频率较低的声学支,前者参与的散射是拉曼散射,后者参与的散射是布里渊散射。固体中的各种缺陷、杂质等只要能引起极化率变化的元激发均能产生光的散射过程,称广义的拉曼散射。按习惯频移波数在50-1,000/厘米间为拉曼散射,在0.1-2/厘米间是布里渊散射。