(频谱仪) 射电望远镜中采用的频谱仪主要有下列四种。
①单通道可调式频谱仪(或称扫频式频谱仪):是早期使用的系统,采用一个中心频率可以移动的窄通带滤波器。随着滤波器中心频率的移动,输入信号中的各频率分量依次通过滤波器,这样便可以得到输入信号的功率谱。
②多通道式频谱仪:是一种经典的系统,目前在毫米波段的谱线接收机中用得较多。这一系统与前者不同之处是,采用了相互并联的n个带通滤波器,滤波器的带宽为△v,各滤波器中心频率的间隔也是△v。测出通过各滤波器的信号功率,便可得到覆盖范围为n△v的功率谱。△v是频率分辨率,它表示谱线接收机分辨频谱细节的能力;n是通道数;n△v为带宽。观测任务不同,所需的分辨率也不同。△v在几千赫到几兆赫范围。通道数n现在可达几百。当△v=1兆赫时,n△v达几百兆赫。
③自相关式频谱仪:在二十世纪六十年代初开始应用。这种系统分辨率高,改变分辨率也方便,故在分米波段和厘米波段得到广泛应用。在采用数字相关器的系统中,信号被取样、数量化与延迟,然后送到乘法器,求出自相关函数后,再用计算机进行傅里叶变换,从而得到信号的功率谱。由于受到运算速度的限制,这一系统带宽在几十兆赫之内。
④声光频谱仪:采用如图所示的装置。一个氦氖激光器发射单色光,通过波束展宽装置照到声光偏转器上。声光偏转器的主体是一块光学介质(如 TeO2晶体、熔石英、玻璃和水等),在偏转器的一端贴上如铌酸锂(LiNbO3)之类的换能器,而另一端贴上吸收物质(如铅等)。接收机输出的中频信号加到换能器上,换能器将电信号变成机械振动,于是在光学介质中形成疏密波,并以行波方式传播。疏密波引起介质中各部分折射率的变化。光通过这部分介质时产生衍射,形成三个"布拉格效应"。声光频谱仪利用其中两个效应,a.光束偏转。b.光束亮度变化,在一定范围内偏转角与中频频偏成正比,其亮度与该频率上的中频功率也成正比。若在偏转器后的透镜焦平面上放一个光敏二极管阵(PDA),测出每个二极管接收到的光的强度,便得到输入的中频信号的功率谱。这种频谱仪设备较简单,分辨率可达几十千赫,带宽可超过100兆赫。