近年来振荡器注定锁相( Osillators Injection-Locked)技术在空间功率合成、波束扫描和波束控制等领域得到了很大的发展 。该技术以 Van der Pol 振荡器模型为基础,主要研究注入信号和振荡器输出信号之间的相位关系 , 并建立起振荡器阵列以实现不用移相器的相控阵天线。注入锁定振荡器能有效地将注入信号的频率信息转换成相位信息 , 根据这一特点, 可用于瞬时频率测量和频率复制 , 首先利用注入锁定振荡器将窄脉冲内微波载频信号变换为低频的相位信息 , 然后根据相位推算出信号频率, 同时还可以控制振荡器输出相同频率的信号 。
注入锁定振荡器工作原理
当注入信号频率和 VCO 自由振荡频率之差在一定范围内时 , VCO 输出信号频率就等于注入信号频率, 且两者的相位差可由注入信号频率来决定 。
注入锁定时间和稳定性分析
在上述分析振荡器的注入锁定现象时 , 注入信号是连续波形式, 这样振荡器才能在注入信号的作用下发生锁定现象。如果想利用振荡器的这种特性对窄脉冲的微波载频进行频率测量, 就必须对注入锁定的时间和稳定性进行分析, 讨论其最小锁定时间, 也就是说振荡器能在多长时间内被注入信号锁定 。
窄脉冲信号频率测量
整个电路由注入锁定振荡器、鉴相器 、低通滤波器、A/D 转换、存储器、D/A 转换、检波器等构成, 振荡器在单个脉冲持续时间内就能锁定,因此可以在脉冲持续时间后期对鉴相器的输出电压进行采样, 这些采样数据码就可作为注入信号频率码 。在脉冲消失后, 利用采样数据形成调谐电压控制振荡器 , 使得振荡器的输出信号频率锁定在注入信号频率上, 实现频率复制 。