在本章的引入部分,两个例子都是判定问题,这两个判定问题都可以通过构造哈夫曼树来优化判定,以达到总的判定次数最少。
再如,要编制一个将百分制转换为五级分制的程序。显然,此程序很简单,只要利用条件语句便可完成。
程序段
if a<60 then b:='bad'
else if a<70 then b:='pass'
else if a<80 then b:='general'
else if a<90 then b:='good'
else b:='excellent';
如果上述程序需反复使用,而且每次的输入量很大,则应考虑上述程序的质量问题,即其操作所需要的时间。因为在实际中,学生的成绩在五个等级上的分布是不均匀的,假设其分布规律如表4所示:
分数 | 0-59 | 60-69 | 70-79 | 80-89 | 90-100 |
比例数 | 0.05 | 0.15 | 0.40 | 0.30 | 0.10 |
表4 分数段的分布频率
则80%以上的数据需进行三次或三次以上的比较才能得出结果。假定以5,15,40,30和10为权构造一棵有五个叶子结点的哈夫曼树,它可使大部分的数据经过较少的比较次数得出结果。但由于每个判定框都有两次比较,将这两次比较分开,得到新的判定树,按此判定树可写出相应的程序。请您自己画出此判定树。
假设有10000个输入数据,若上程序段的判定过程进行操作,则总共需进行31500次比较;而若新判定树的判定过程进行操作,则总共仅需进行22000次比较。