造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

并行排序串行算法

2018/06/19156 作者:佚名
导读: 模拟快速排序二叉树上模拟快速排序串行算法简介:快速排序是一种较为高效的排序算法,它通过不断的划分待排序列为两段,使得前一段总小于或等于某个数,而后一段总大于某个数,这样每次划分就能确定一个数的最终位置。一般情况下,如果每次划分的两个子列大致等长,那么它的时间复杂度是。在PRAM-CRCW计算模型上利用二叉树网络模拟快速排序由快速排序的过程,我们可以看到,快速排序实际上就是在构造一棵二叉树,让

模拟快速排序

二叉树上模拟快速排序

串行算法简介:快速排序是一种较为高效的排序算法,它通过不断的划分待排序列为两段,使得前一段总小于或等于某个数,而后一段总大于某个数,这样每次划分就能确定一个数的最终位置。一般情况下,如果每次划分的两个子列大致等长,那么它的时间复杂度是。

在PRAM-CRCW计算模型上利用二叉树网络模拟快速排序

由快速排序的过程,我们可以看到,快速排序实际上就是在构造一棵二叉树,让划分主元位于根节点,使得左子节点小于或等于根而右子节点大于根,最后对整棵二叉树进行一次中序遍历,便可以得到最后排好序的数列。

我们可以选n个处理器分别保存待排序数组A的n个元素,处理器Pi对应一个变量Xi用于存放主元元素的处理器号,以及两个变量L,R分别存放其左右儿子。开始时,每一个处理器都试图往变量root中写入它的处理器号,若果我们使用PRAM-CRCW计算模型,那么就只有一个能够写入root,接着root被复制给每一个处理器的Xi。然后对于每个处理器Pi(除去被原为主元的那个外),判断主元A(root)的值与A(Xi)的值的大小,从而确定把A(Xi)放入编号为Xi(注意不是编号为i)的处理器的L变量还是R变量里。还是,同样的,由于并发操作的互斥性,只有一个只能被最终写入,他们就作为下次划分的主元。算法继续进行直到n个主元被选完为止。

时间复杂度分析:由于一层节点的构造时间是Θ(1),所以算法的时间复杂度是Θ(logn)

超立方体上模拟快速排序

超立方体网络是基于超立方体连接构建的网络。网络中以格雷码对各顶点编号。在下面的描述中,设顶点数p= 2,待排序元素共有n个。

超立方体上的快速排序是这样进行的:首先我们将n个元素分配到p个处理器上,为了使问题讨论简单化,假设n是p的整数倍,那么每个顶点将会分到个元素。然后随机选一个主元,各个处理器将每个顶点中的元素按与主元的比较结果分为两部份。这个算法的关键点在这里,对每一个处理器(顶点)在进行第i次划分时,将大于主元的部分都送到超立方体的一个d-i维自立方体中,而将小于主元的部分送到另一个d-i位的子立方体中,这样就模拟了快速排序中的划分算法。子立方体可以这样选择:在第i次划分中判断第i位是0还是1。划分算法到处理完所有1维子立方体后结束。接下来对每个顶点中的元素调用串行算法进行局部排序,最后对整个立方体进行一次遍历便可得到排好序的元素。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读