成像清晰
由于利用光学或数字技术消除了聚焦平面以外的荧光信号的干扰, 使我们要分析的区域内的图像清晰度提高, 得到更为准确的定位和定量信息。
连续片层扫描及图像重组
共聚焦显微镜在计算机的控制下可以对样品中的不同层面进行连续逐层扫描, 以获得各个层面的图像, 层面之间的间距可以达到0. 1微米甚至更小, 在图像获得后由计算机自动将这些图形重组为三维图像。与普通光学照相机获得的图像比较,共聚焦所得到的重组三维立体图形清晰度高、层次分明、立体感更强, 通过计算机软件处理, 可以对三维图形进行任何形式的旋转, 可以从任何角度进行观察, 还可以对细胞内的某个选定结构进行长度、体积的测量和计算, 在分析细胞内的空间结构和某些物质在细胞内的精确定位方面具有明显的优势, 这也是共聚焦显微技术诸多功能中应用最广泛的一种。
多标记技术
利用共聚焦系统可以同时对利用两种或三种不同的荧光染料分别标记了细胞的不同结构(如分别标记染色体和细胞骨架系 统) 的样品进行观察, 这样一次实验观察就可以获得细胞内不同结构的信息, 对不同结构组分的定位、相互联系方式进行研究。在最终获得的图像可以分开表示单个结构; 也可以将图片迭加在一起, 用不同颜色表示不同的结构, 更加直观, 这是普通荧光显微镜无法做到的。
活体观察
除了可以对固定标本的细胞进行观察外, 共聚焦显微技术还可以在不对细胞进行固定或其他损伤性处理的情况下进行观察, 获得活细胞内[5]的信息, 显示在活体情况下细胞内的真实结构和生理学特征。更为重要的是利用共聚焦显微镜可以跟踪自然状态下或受某种因素刺激后活细胞内的结构和生理过程随时间变化的情况, 得到准确而直观的动态变化资料, 为分析细胞内的生理生化反应提供直接的实验数据。
获得数量化信息
共聚焦显微技术不仅能够对细胞内荧光进行定位, 还可以对其进行定量分析, 获得二维或三维空间内分布在样品不同部位的荧光强度数值以及荧光强度在各种处理条件下的变化情况。量化信息的获得是研究活细胞内生理生化反应时重要的手 段, 而共聚焦显微技术在这一方面的优势是其他技术所无法达到的。