造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

钢筋混凝土梁设计计算

2018/06/19174 作者:佚名
导读:钢筋混凝土梁截面的计算理论有弹性理论和破坏强度理论两种。 ① 弹性理论。以工作阶段Ⅱ的应力状态为基础,假设:构件正截面在受力后仍保持平面并与纵轴垂直;混凝土不承担拉应力,全部拉力由钢筋承担;无论混凝土和钢筋的应力-应变关系都服从胡克定律;钢筋弹性模量Es与混凝土弹性模量Ec的为一常数。 为了利用匀质弹性体材料力学的公式,需把钢筋和混凝土两种材料组成的截面折算成为单一材料的截面。由于钢筋和混凝土之间

钢筋混凝土梁截面的计算理论有弹性理论和破坏强度理论两种。

① 弹性理论。以工作阶段Ⅱ的应力状态为基础,假设:构件正截面在受力后仍保持平面并与纵轴垂直;混凝土不承担拉应力,全部拉力由钢筋承担;无论混凝土和钢筋的应力-应变关系都服从胡克定律;钢筋弹性模量Es与混凝土弹性模量Ec的为一常数。

为了利用匀质弹性体材料力学的公式,需把钢筋和混凝土两种材料组成的截面折算成为单一材料的截面。由于钢筋和混凝土之间的粘结力很好,故认为它们之间的应变保持一致,钢筋的应力等于混凝土应力乘以αE,从而钢筋面积AS可以折算成为混凝土面积αEAS,由折算截面积对中和轴的静矩等于零的条件,可得出中和轴至混凝土受压区边缘的距离,梁截面内任意点的应力可由下式算得:σ=Mr/I0,式中M为作用弯矩;r为从中和轴到计算纤维水平的距离;I0为折算截面面积对中和轴的惯性矩。

② 破坏强度理论。以工作阶段Ⅲ的应力状态为基础,假设,混凝土开裂后,不承担拉应力,全部拉力由钢筋承担,钢筋达到屈服极限fy;受压区混凝土的应力-应变关系不服从胡克定律,其应力分布图形为曲线形,但为了计算的简化,压区混凝土的应力图形取为矩形,其弯曲抗压强度等于fcm。

由水平力平衡条件得中和轴至混凝土受压边缘的距离x=Asfy/bfcm,截面极限抵抗矩的内力臂为z=h0-x/2,于是由受拉钢筋控制的极限抵抗矩为式中h0为受拉钢筋中心至混凝土受压边缘的距离。

试验结果表明,只有当混凝土的受压区高度xδh0时,上列公式才能成立。式中δ值主要取决于钢筋品种和混凝土标号,约为0.35~0.55。

设计钢筋混凝土梁时,除了计算其正截面的强度外,还要计算剪力作用下的斜截面强度,以保证其安全。此外,还需要计算梁的抗裂度、裂缝开展宽度和挠度都不能超过容许的限值,以满足正常使用的要求。对于承受多次反复荷载作用的梁,如铁路桥梁、吊车梁,还须计算其疲劳强度。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读