造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

工程软岩非线性力学

2018/06/19114 作者:佚名
导读: 6.1 软岩巷道支护非线性力学工程设计的内容和特点如果说以经验类比、刚体力学平衡和线性小变形力学理论为基础的常规设计理论和方法对于小变形岩土工程(中小边坡工程、浅基坑和浅埋隧道工程)尚能奏效的话,那么对于大变形岩土工程(高大边坡、深基坑和深埋隧道)设计就必须用大变形力学设计理论和方法[21]。这是因为常规方法遵循的刚体力学或小变形力学理论,研究的介质对象是不变形体或弹性体,在力学分析过程中,

6.1 软岩巷道支护非线性力学工程设计的内容和特点

如果说以经验类比、刚体力学平衡和线性小变形力学理论为基础的常规设计理论和方法对于小变形岩土工程(中小边坡工程、浅基坑和浅埋隧道工程)尚能奏效的话,那么对于大变形岩土工程(高大边坡、深基坑和深埋隧道)设计就必须用大变形力学设计理论和方法[21]。

这是因为常规方法遵循的刚体力学或小变形力学理论,研究的介质对象是不变形体或弹性体,在力学分析过程中,服从叠加原理,并与荷载的特性、加载的过程无关,因此,其设计方法就是参数设计。这方面的研究者有Terzaghi(1960),Davision(1972),Bgerrum(1974),和Denby(1977)等科学家;而对大变形岩土工程而言,其标志是进入了显著塑性变形阶段,其设计必须依据非线性大变形力学理论。这方面的杰出研究者有孙钧(1968),朱维申(1970),Taylor(1974),Taif(1974),Clough(1977),刘建航(1979)。但岂今为止,虽然非线性大变形力学理论研究得很多,但非线性大变形力学区别于线性小变形力学是其研究的大变形岩土体介质已进入到塑性、粘塑性和流变性的阶段,在整个力学过程中,已经不服从叠加原理,而且力学平衡关系与各种荷载特性、加载过程密切相关。因此,其设计不能简单地用参数设计来进行,而是首先分析和确认作用在岩土体的各种荷载特性,作力学对策设计;接着进行各种力学对策的施加方式、施加过程研究。实践证明,相同的力学对策,不同的过程,其效果截然不同。所以要进行过程优化设计;然后对应着最佳过程再进行最优参数设计。上述思想如表4所示。

表4 大变形软岩工程设计与常规设计特点比较

Tabale 4 The comparison of non-linear

deformation design with normal design

设计

方法 理论

依据 介质

特性 叠加

原理 加载

过程 荷载

特性 工程设

计内容

常规

方法 经验类

比刚体

力学线

性力学 刚体

弹性体 服从 无关 无关 参数

设计

大变形软

岩工程

设计方法 非线性

大变形

力学 塑性体

粘塑性

流变性 不服从 密切

相关 密切

相关 ①力学对策设计

②过程优化设计

③最优参数设计

6.2 大变形岩土工程失稳机制与支护对策

实践表明,大变形岩土工程的失稳是一个渐近过程,总是先从一个或几个部位首先发生变形破坏,而后逐渐扩展乃至整个岩土工程失稳。首先破坏的部位称之为关键部位,是发生大变形过程中局部应力、应变和能量不协调所造成的,关键部位引起岩土工程失稳的机制与支护对策如图17所示。

图17 大变形岩土工程失稳机制与支护对策

Fig.17 Mechanism of geotechnical engineering instabilities

of large by deformed rock body and its supporting measures

6.3 大变形耦合设计的优点

大变形岩土工程的设计实现是一个过程,而且不能靠增加支护强度来实现。小变形岩土工程的基本出发点是控制强度而避免破坏;大变形岩土工程的核心问题是加强关键部位支护而控制变形稳定性,从而保证周围建筑物安全。和国内外著名的新奥法比较,在非线性大变形力学设计理论指导下发展起来大变形耦合设计具有其独特优点,如表5所示。

表5 大变形耦合设计优点比较[何满潮,1998]

Table 5 The advantage of large

deformation coupling design

比较内容 新奥法设计 大变形耦合设计

一次支护后 被动等稳 一次耦合,主动促稳

二次支护 全断面支护 二次耦合,关键部位支护

二次支护

时间判定 需大量量测工作 无需量测,

仅依据现场特征判断

设计方法 参数设计 ①力学对策设计;

②过程优化设计;

③最佳参数设计。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读