这种测量的基本结构如图1。 有些单次瞬变过程的变化速度极快,全过程只有几微秒,而且需要着重研究的部分只有几纳秒,甚至亚纳秒。这要求波形获取装置具有获取、记录、存储高速信号的能力,又要具有对高速变化波形的响应能力(高的通频带),保证所录取信号的失真尽可能小,保存的信息尽可能多。写速和带宽是评定单次瞬变波形记录系统性能的两个重要指标。
示波器显示照相记录法 在示波器荧光屏显示单次波形,通过照相机透镜在感光胶片上记录,人工读取数据。由于荧光材料有足够的余辉时间,可以将纳秒信号暂存在荧光屏上达若干微秒甚至毫秒,以使感光材料曝光。这种方法曾是早期核试验和其他单次过程中获取数据的主要方法,也是现代实验室中常用的一种方法。这种方法在60年代中期达到了写速为 2×1012tw/秒(tw为示迹宽度)、带宽 1吉赫以上的能力。主要缺点是数据读取费时,效率低。 带有存储功能的荧光屏,曾被作为一种有希望的设备而加以研究,其技术水平达到了写速为6×1010tw/秒,带宽400兆赫。
微通道板示波器与扫描相机系统 微通道板示波管,是在一般示波管的荧光屏背后放置一块具有 104量级的电子倍增能力的微通道板电子倍增器,用以提高被单次纳秒脉冲所偏转的电子束的密度,以解决电子束密度低、示迹亮度不足这一根本问题。亮度问题的解决也促进了偏转灵敏度和带宽的提高,并使荧光屏上单次波形的数字化成为可能。70年代中期,出现了微通道板示波器与扫描相机系统,制成了示波器与计算机相结合的一种亚纳秒波形数字化系统,写速达1.75×1011tw/秒,带宽7吉赫。偏转灵敏度的提高,使放大器达到了直流至1吉赫的带宽和10毫伏每格的灵敏度。
瞬态波形数字化系统 这种系统以硅靶存储双枪扫描变换管为基础。硅靶存储双枪扫描变换管(图3)使单次波形直接数字化成为可能。在两个相对的电子枪中间,放置一个具有存储能力的硅靶,用写枪将高速模拟信号写在靶上,再由读枪依次将此信号以数字量形式读出,存储时间约100微秒。它能完成高速模拟量到慢数字量的转换。这种设备便于与计算机结合而构成完整的波形数字化系统。写速可达5×1011tw/秒,带宽1吉赫,而且可以多台设备联用,完成复杂的单次高速瞬变过程的测量。 数字波形存储示波器和波形存储器 这是一种以半导体器件为基础的波形数字化装置,其关键部件是模-数转换器。现代使用的仪器带宽在 100兆赫以下。这是一种很有发展前途的设备。
单次取样装置 将单次波形进行取样,而后复现,进行数字化处理。20路的取样器带宽达到1吉赫,并可将数据接到计算机上进行处理。
电荷耦合器件单次瞬变波形数字化装置 电荷耦合器件是一种新型半导体表面器件,可用于大容量存储、摄像和模拟延迟。其存储和模拟量的延迟功能,给单次瞬变波形测量提供了新的途径。80年代初,以电荷耦合器件为核心部件的存储示波器开始生产,其带宽达到60兆赫。以电荷耦合器件为核心的单次波形存储器在实验室已制成带宽200兆赫、1吉赫的实验装置。