在不锈钢的应用中对不锈钢结构进行焊接和切割是不可避免的。由于不锈钢本身所具有的特性,与普碳钢相比不锈钢的焊接及切割有着其特殊性,更易在其焊接接头及其热影响区(HAZ)产生各种缺陷。焊接时要特别注意不锈钢的物理性质。
例如奥氏体型不锈钢的热膨胀系数是低碳钢和高铬系不锈钢的1.5倍;导热系数约是低碳钢的1/3,而高铬系不锈钢的导热系数约是低碳钢的1/2;比电阻是低碳钢的4倍以上,而高铬系不锈钢是低碳钢的3倍。这些条件加上金属的密度、表面张力、磁性等条件都对焊接条件产生影响。
马氏体型不锈钢一般以13%Cr钢为代表。它进行焊接时,由于热影响区中被加热到相变点以上的区域内发生a-r(M)相变,因此存在低温脆性、低温韧性恶化、伴随硬化产生的延展性下降等问题。因而对于一般马氏体型不锈钢焊接时需进行预热,但碳、氮含量低的和使用r系焊接材料时可不需预热。焊接热影响区的组织通常又硬又脆。对于这个问题,可通过进行焊后热处理使其韧性和延展性得到恢复。另外碳、氮含量低的牌号,在焊接状态下也有一定的韧性。
铁素体型不锈钢以18%Cr钢为代表。在含碳量低的情况下有良好的焊接性能,焊接裂纹敏感性也较低。但由于被加热至900℃以上的焊接热影响区晶粒显著变粗,使得在室温下缺少延伸性和韧性,易发生低温裂纹。也就是说,一般来讲铁素体型不锈钢有475℃脆化、700-800℃长时间加热下发生б相脆性、夹杂物和晶粒粗化引起的脆化、低温脆化、碳化物析出引起耐蚀性下降以及高合金钢中易发生的延迟裂纹等问题。通常应在焊接时进行焊前预热和焊后热处理,并在具有良好韧性的温度范围进行焊接。
奥氏体型不锈钢以18%Cr-8%Ni钢为代表。原则上不须进行焊前预热和焊后热处理。一般具有良好的焊接性能。但其中镍、钼的含量高的高合金不锈钢进行焊接时易产生高温裂纹。另外还易发生б相脆化,在铁素体生成元素的作用下生成的铁素体引起低温脆化,以及耐蚀性下降和应力腐蚀裂纹等缺陷。经焊接后,焊接接头的力学性能一般良好,但当在热影响区中的晶界上有铬的碳化物时会极易生成贫铬层,而贫铬层和出现将在使用过程中易产生晶间腐蚀。为避免问题的发生,应采用低碳(C≤0.03%)的牌号或添加钛、铌的牌号。为防止焊接金属的高温裂纹,通常认为控制奥氏体中的δ铁素体肯定是有效的。一般提倡在室温下含5%以上的δ铁素体。对于以耐蚀性为主要用途的钢,应选用低碳和稳定的钢种,并进行适当的焊后热处理;而以结构强度为主要用途的钢,不应进行焊后热处理,以防止变形和由于析出碳化物和发生δ相脆化。
双相不锈钢的焊接裂纹敏感性较低。但在热影响区内铁素体含量的增加会使晶间腐蚀敏感性提高,因此可造成耐蚀性降低及低温韧性恶化等问题。
全新节约型双相钢及其焊接性能
当今市场上有四种主要类型的双相钢:节约型双相钢、标准双相钢、顶级双相钢与超级双相钢。它们之间的差异表现在化学分析及其机械与腐蚀性能上。它们的相似之处是它们都有铁素体固化,并且在大约1,420摄氏度的温度下开始、在约800摄氏度的温度下结束形成奥氏体。由于这些钢材有两种晶体结构,从而形成有益于用户的一系列理想的性能。铁素体主要赋予高强度与抗应力腐蚀开裂的高性能,而奥氏体则赋予延展性和全面的耐腐蚀性。
在建筑结构中选择双相钢,经常可以因其具有较高的强度而降低板材厚度,从而减轻建筑物的重量。除此之外,由于世界市场上合金元素(例如镍)的价格猛涨,因此节约型的双相钢变得更加流行。2304(1.4362)是头等品级中的一种,这种材料的强度更高,腐蚀性能至少同等,因此能够与316品级竞争。最新的品级2101(1.4162)已经在相对较短的时间内获得了很大的市场份额。
"节约型双相钢"经常会出现的焊接性能问题。而焊接标准双相钢并不是一个问题,而且不论采用何种工艺,都有适合这些应用的焊材。从金相的角度来看,焊接2101(1.4162)根本就没有问题,实际上它甚至要比标准级的双相钢更加容易焊接,因为这种材料事实上可以采用乙炔焊工艺来进行焊接,而对于标准双相钢材料而言,始终必须避免使用这种工艺。焊接2101所面临的实际问题是熔池的粘度不同,因此可湿性差了一点。这迫使操作人员在焊接的过程中更加多地使用电弧焊,而这正是问题的所在。尽管可以通过选择超合金化焊材加以弥补,但是我们经常希望选择匹配的焊材。
在2101中,也存在低温热影响区和高温热影响区中的显微结构之间的热影响区相互作用,比2304、2205或2507更加有利。在以2101进行试验时,也已经发现由于镍含量较低,因此产生了含有较多氮与锰的不同类型的"回火色",而这影响了腐蚀性能。在电弧和熔池中发生的这一成分损失是由于氮与锰的蒸发与熔敷,这对于双相钢等级的材料来说是一个新问题,因此在这次讲课中将作了较多描述。