在射电天文学及其他领域中广泛应用的迪克型调制辐射计(图2)能有效地消除增益不稳定对灵敏度的影响。基本原理是在接收机的输入端加一调制开关,以每秒几十次到几百次的调制频率vM把待测信号与固定的参考信号T轮流接入, 使在高频信号上加频率为的调幅信号,经混频、放大,频率为的同步检波后,得到与 (-)成正比的输出。频率小于vM的起伏都将被抑制。调制辐射计的灵敏度为: 式中M取 1.41~2.22,由于·△G项的消失,△T将下降。如果调节参考信号,使之等于,则可完全消除△G 项的影响,此即为平衡调制辐射计。降低 ,加大频宽△v 和时间常数τ,都是提高灵敏度的可行办法。但加大△v·τ ,会受待测源本身的特征(如谱线接收和变化过程的测量)及外界干扰的限制。降低,可采用低噪声前置放大器(低温参量放大器、量子放大器及短毫米波段的低温混频器等)以降低TN;设计制作性能好的、如旁瓣和后瓣都很小的天线,以降低TG、Tc和TS;将前置放大器尽量靠近天线的馈源,以降低Tc;采用合理、精心设计的观测程序,以减少TM 及TS的影响等。随着射电天文观测对象进入更微弱的领域,扩充观测频段,进一步降低是一项需要不断努力的艰巨任务。此外,用作辐射测量的接收机,必须有足够的线性范围,才能用已知的噪声标准准确地测出待测源的强度,并且在待测源的强度有很大的变化时仍能正确测定。辐射计还应具有一定的抵抗外界各种干扰的能力。作为射电辐射计一个组成部分的校正噪声源,是对收到的辐射进行定标的工具。校正噪声源可以分为两种:一种是作为基准的热噪声源,它的输出可以依其他物理参数(如温度)进行计算;另一种是必须被校正的二级标准噪声源,它虽然不能独立给出输出功率,但具有经济、简便、输出稳定、可重复使用的性能。噪声二极管、气体放电噪声管都属于第二种。