1电压/电流转换电路
电压/电流转换即V/I转换,是将输入的电压信号转换成满足一定关系的电流信号,转换后的电流相当一个输出可调的恒流源,其输出电流应能够保持稳定而不会随负载的变化而变化。V/I转换原理如图1。
由图1可见,电路中的主要元件为一运算放大器LM324和三极管BG9013及其他辅助元件构成,V0为偏置电压,Vin为输入电压即待转换电压,R为负载电阻。其中运算放大器起比较器作用,将正相端电压输入信号与反相端电压V-进行比较,经运算放大器放大后再经三极管放大,BG9013的射级电流Ie作用在电位器Rw上,由运放性质可知:
V-=Ie·Rw=(1+k)Ib·Rw
(k为BG9013的放大倍数)
流经负荷R的电流Io即BG9013的集电极电流等于k·Ib。令R1=R2,则有
V0+Vm=V+=V-=(1+k)Ib·Rw=(1+1/k)Io·Rw
其中k 》1,所以Io≈(Vo+Vin)/Rw。
由上述分析可见,输出电流Io的大小在偏置电压和反馈电阻Rw为定值时,与输入电压Vin成正比,而与负载电阻R的大小无关,说明了电路良好的恒流性能。改变V0的大小,可在Vin=0时改变Io的输出。在V0一定时改变Rw的大小,可以改变Vin与Io的比例关系。由Io≈(V0+Vi)/Rw关系式也可以看出,当确定了Vin和Io之间的比例关系后,即可方便地确定偏置电压V0和反馈电阻Rw。例如将0~5V电压转换成0~5mA的电流信号,可令V0=0,Rw=1kΩ,其中Vo=0相当于将其直接接地。若将0~5V电压信号转换成1~5mA电流信号,则可确定V0=1.25V,Rw=1.25kΩ。同样若将4~20mA电流信号转换成1~5mA电流信号,只需先将4~20mA转换成电压即可按上述关系确定V0和Rw的参数大小,其他转换可依次类推。
为了使输入输出获得良好的线性对应关系,要特别注意元器件的选择,如输入电阻R1、R2及反馈电阻Rw,要选用低温漂的精密电阻或精密电位器,元件要经过精确测量后再焊接,并经过仔细调试以获得最佳的性能。我们在多次实际应用中测试,上述转换电路的最大非线性失真一般小于0.03%,转换精度符合要求。
2电压/频率转换电路
电压/频率转换即V/F转换,是将一定的输入电压信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。针对煤矿的特殊要求,我们只分析如何将电压转换成200~1000Hz的频率信号。
实现V/F转换有很多的集成芯片可以利用,其中LM331是一款性能价格比较高的芯片,由美国NS公司生产,是一种目前十分常用的电压/频率转换器,还可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。由于LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vs短路。图2是由LM331组成的典型的电压/频率变换器。
其输出频率与电路参数的关系为:
Fout=Vin·Rs/(2.09·R1·Rt·Ct)
可见,在参数Rs、R1、Rt、Ct确定后,输出脉冲频率Fout与输入电压Vin成正比,从而实现了电压-频率的线性变换。改变式中Rs的值,可调节电路的转换增益,即V和F之间的线性比例关系。将1~5V的电压转换成200~1000Hz的频率信号,电路参数理论值为R=18kΩ,Ct=0.022uF,R1=100kΩ,Rs=16.5528kΩ,由于元器件与标称值存在误差,在电路参数基本确定后,通过调节Rs的电位器,可以实现所需V/F线性变换。
由Fout=Vin·Rs/(2.09·R1·Rt·Ct)可知,电阻Rs、R1、Rt和电容Ct直接影响转换结果Fout,因此对元件的精度要有一定的要求,可根据转换精度适当选择,其中Rt、Ct、Rs、R1要选用低温漂的稳定元件,Cin可根据需要选择0.1uF或1uF。电容C1对转换结果虽然没有直接的影响,但应选择漏电流小的电容器。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。电路中的47Ω电阻对确保电路线性失真度小于0.03%是十分必须的。
图2电路是将1~5V的电压转换成200~1000Hz的频率信号的典型电路及参数,要实现将4~20mA或0~5V转换成200~1000Hz的频率信号只要增加一些辅助电路即可实现,其他转换也依此类推。