切削刀具表面涂层技术是近几十年应市场需求发展起来的材料表面改性技术。采用涂层技术可有效提高切削刀具使用寿命,使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。
涂层的作用
1、提高硬质合金的耐磨性性能;
2、提高抗氧化性能;
3、减小摩擦;
4、提高抗金属疲劳性能;
5、增加抗热冲击性。
涂层的特点
1、力学和切削性能好。
涂层刀具将基体材料和涂层材料的优良性能结合起来,既保持了基体良好的韧性和较高的强度,又具有涂层的高硬度、高耐磨性和低摩擦系数。因此,涂层刀具的切削速度与未涂层的相比,切削速度可提高2~5倍,使用涂层刀具可以获得明显的经济效益。
2、通用性强。
涂层刀具通用性广,加工范围显著扩大,一种涂层刀具可以代替数种非涂层刀具使用,因而可以大大减少刀具的品种和库存量,简化刀具管理,降低刀具和设备成本。
涂层的分类
根据涂层方法不同,涂层刀具可分为化学气相沉积(Chemical Vapour Deposition,简称CVD)涂层刀具、物理气相沉积(Physical Vapour Depositon,简称PVD)涂层刀具及混合工艺及组合技术。CVD涂层原理如图a所示,PVD涂层原理如图b所示。混合工艺是等离子辅助CVD技术与传统的PVD技术进行有效的结合。比如先沉积传统的CrN硬质涂层,再在最上面沉积一层用于减少摩擦的DLC涂层。组合技术是涂层前对工具或零部件的表面层进行氮化,可以提高涂层的功效。
CVD涂层,沉积温度在1 000℃左右,可以涂覆耐磨损性优异的TiCN、耐热性非常优异的Al2O3厚膜,因此在产生高温的高速、高效率切削加工中能显示出长寿命,CVD涂层如图a所示。
PVD涂层,沉积温度在500℃左右,一般用在与无涂层硬质合金、高速钢相同或较高速的切削速度条件下,以延长刀具寿命为目标。对基体制约少、损伤小,因此特别适合用于要求耐磨损性、耐崩刃性的刀具,也适用于要求锋利刃口的低进给加工与精加工或螺纹加工工具等,PVD涂层如图b所示。
金刚石涂层采用CVD(化学蒸镀法)在硬质合金基体上合成。合成的涂层具备与天然金刚石相匹敌的硬度与导热系数,在非铁材料的加工中发挥着优异的性能。金刚石涂层刀具由于其良好的切削性能,在切削加工领域具有广阔的应用前景,是加工石墨、金属基复合材料、高硅铝合金及许多其他耐磨蚀材料的理想刀具,目前其主要应用领域是汽车和航空航天工业。金刚石涂层刀具的组织如下图所示。
金刚石涂层刀具组织
根据涂层材料的性质,涂层刀具又可分为两大类,即“硬”涂层刀具和“软”涂层刀具。“硬”涂层刀具追求的主要目标是高的硬度和耐磨性,其主要优点是硬度高、耐磨性好,典型的是TiC和TiN涂层。“软”涂层刀具是采用固体润滑剂如MoS2、WS2等制备的刀具,“软”涂层追求的目标是低摩擦系数,也称为自润滑刀具,它与工件材料的摩擦系数很低,只有0.1左右,可减小粘、减轻摩擦、降低切削力和切削温度。
涂层的结构
经过多年的发展,涂层的结构已经发生了许多变化,有了很大的改进。在涂层技术中,通常有以下五种不同的结构:
1、单层结构
顾名思义,这种结构只有一层涂层。当我们在显微镜下观察这种结构时,可以看见一些长柱形涂层结构。这种涂层很容易涂覆,但也很容易产生裂纹和破损。想象一下,当一个球击中一束柱体时,这些柱体就会开始倒下,而裂纹轻易就能贯穿涂层,到达基体。
2、多层结构
多层结构是由许多不同的单层结构彼此重叠在一起构成的。表面花纹钢就是历史上此类结构的一个例子。多层结构涂层可将几种涂层材料的特性结合在一起,形成韧性与硬度俱佳的表面。
3、纳米多层结构
纳米多层结构与多层结构本质上相同,但其层厚却要薄得多:涂层厚度仅为原子级水平。
4、纳米复合涂层结构
纳米复合涂层采用了与硬质合金刀具类似的技术。这种纳米结构将粘结相(例如硬质合金中的钴)的韧性与纳米复合涂层的硬度结合在一起。
5、梯度结构
该结构的涂层性能具有渐变性:涂层中心部分较软而富有弹性,而在靠近表层时则变得坚硬而耐磨。
涂层的选用
为了更好地选择和发展刀具及零部件的最佳功效,需要鉴别其主要及特定的磨损性和失效机理。磨损、粘附、腐蚀和疲劳都视为磨损机理,而且都取决于实际的应用。经验指出,材料的摩擦和磨损都不是材料的原因,而是整个系统的原因。因此,在选择涂层前就必须分析整个摩擦系统,包括零部件的技术性能、抗压力范围以及磨损机理的类型。
硬质合金涂层的应用举例
1、切削工具:钻头、刀片等。
2、耐磨工具,包括各种金属模具、冲头、轧辊、切割刀具等。
涂层发展前景
当前切削产业仍然面临着各种问题,其中用户要求越来越高以及要切削的材料特性这两方面问题尤为突出。
点阅读原文—索取《刀具界》杂志-成为会员