试验室一般都采用数字存储示波器进行电容放电的测量,在被测器具断电时刻开始记录L极与N极之间、L极与G(如果有)之间和N极与G(如果有)之间的电容放电并存储记忆,然后在示波器上读取电压值加以判定,按照GB 4943.1-2011标准,如果1s后的电压降至初始电压的37%以下;或者按照GB 8898-2011标准,2s后的电压不超过交流35V(峰值)或直流60V,则可以判定本测试样品的此项检测是合格的。
两种电路得到的输出波形。接通电源时波形与断电后波形没有明显的分界线,单纯从波形上确定断电的开始时间,较为困难,我们可以把最后一个311V波峰作为断电开始的标志,这样时间上的误差不超过0.02s;相比之下,突然出现一个电压峰值,然后逐渐衰减下来的波形,看来似乎可以把开关切换的瞬间的脉冲峰值作为断电的时刻,但是,由于人为工地操作,开关从电网断开到接通示波器之间的时间间隔远大于0.02s,在这段时间里,电容已经开始了放电过程,也就是波形的第一个波峰实际是断电容放电曲线图一段时间后电容两端的电压。所以测量电路a应是比较好的方法。如果转换开关使用了继电器或者其它类似装置,使得转换时间可以缩少至0.02s以内,则测量线路b也是可以使用的。
从测量的方法来看,测试并不复杂,但是测试中示波器的选择、测试细节的把握,均会对测试结果产生影响,甚至有可能做出错误的判定。试验需要注意的事项有:
1)断电时刻的U由于测试实际上是对器具电路的零输入响应的测量,测试结果是与断电时刻的电路状态,如电容两端电压、或电感中的电流等直接相关。当断电时刻电网电压正好处于波峰时,电容两端的电压高,在电路不变的情况下,放电时间也较长;反之,假如断电时刻正好处于电网电压的过零点,则电容不存在放电过程。此外,由于被测试设备的等效负载类型很多,有纯阻型,电容、电阻电感串并混合型等,所以无法准确控制断电时刻的电网瞬间电压,几乎每次断电,我们都可能得到不同的输出波形。
由于输出波形的不确定性,GB 8898-2011中提出:为了找到最不利的情况,试验可重复10次。一般情况下,比较理想的情况是电容从波峰开始放电,这样可以真实地反映放电的时间长短。但是在实际操作中,很难捕捉到从波峰点开始放电的波形,即使是通过10次试验,也不一定能找到最不利的情况。同时GB 494-2011标准中没有提出测试10次的要求,认为原因是GB 4943-2011标准中规定:被测点的电压降到初始电压的37%时所需的时间应小于1s(或10s)。而放电的方程式是恒定的,所以无论初始值是多少,到37%的初始值的时间也是恒定的。但我们在测量中一般为了取得较理想的波形图,认为还是尽可能使初始值为波峰值。为了使电容可以从波峰开始放电,可以使用“可设定断电相位角”的电源产品给被测设备供电,将交流电断电相位角设定为90°或者270°,这样放电的U肯定从波峰开始的。这种方法简单方便,与实际相一致。缺点就是这种“可设定断电相位角”的交流电源比较昂贵,一般试验室是没有配备。
2)电压的容差
在进行电容放电测试时,应选用最严酷的测试状态,所以也需要考虑标准内规定的电压容差的问题,如按GB 8898-2011进行测试,额定输入电压为220V~时,在进行电容放电测试,就需要按标准规定的220×10%=242V~进行测试判定。
3)放电负载对测试结果的影响
放电试验需要在最严酷的状态下测试,例如器具在运行的情况下断电测量,此时电容的放电负载可能包括:压敏元件、变压器、负载元件等,这些元件同时并联在电容两端,放电负载基本由其中阻抗最小的元件决定,使得测试结果大大小于实际可能出现的结果。所以,有时候被测器具在待机状态下或者空载状态下进行放电的测试,测量结果会比带载工作条件下更加严酷。此外,仪器的选择也很重要,例如示波器探头的使用,应尽量选择输入阻抗大的仪器,GB4943-2011中规定:当测量电压衰减时,使用输入阻抗由一个100MΩ±5MΩ电阻和一个输入电容量为20pF±5pF的电容并联组成的仪器得到结果。因为有时只有压敏元件并联在电容两端时,放电负载是兆欧级的,如果只选用输入阻抗几千欧的仪器,则电容主要放电对象为仪器,测试不能得到对器具的客观评价。