新型的材料伴随着科学研究和地球物理学研究的发展而出现,伴之以超高压测量技术的产生,1954年,美国通用电气公司合成了金刚石,是在高温(温度约为17000K)、高压条件下合成的。不久,又合成了立方氮化硼,温度为1800°K,压力为5-6GPa。三十多年来,世界各国在实验室条件下合成的物质已超过1 000种,我国在50年代末合成了金刚石,又在70年代合成了立方氮化硼单晶,烧结出大颗粒立方氮化硼聚晶体。
在地球物埋学方面,人们一直在努力研究合成地球内部某些稀有的矿物,在实验室内复现地球内部的压力和温场,是证明地球有关假说的有力手段。采用高温高压实验来验证构成地球的物质的物理性质及相互反应的条件研究地球内部岩石结构的变化及成矿规律研究高压力下某些物质的特性,如高压力下物质的电导率、磁性、光学特性等已很普遍。
超高压测量问题,在工业技术中不但要求装置简单、缓、全,而且要求有高的测量精度。因此,世界各国普遍提出了关于超高压精密测量的基础理论和测量技术的研究。
我国早在60年代已试制出1GPa的标准活塞式压力计,1981年上海计量测试研究所又研制成2.5 GPa的超高压装置,中国科学院的物理所、材料所等科研单位,根据自己的要求设计了各种类型的超高压装置,对超高压技术进行研究。急待解决的问题是如何标定出我国自己的压力定标数据,以适应科学技术的发展。
可见,超高压技术是包括超高压力的产生、控制和测量的研究,其测量装置(包括数据处理系统)的性能,又直接影响着超高压力的产生和控制。