造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

炉型下置多喷嘴对撞喷入式炉型

2022/07/13286 作者:佚名
导读:在气流床气化炉中, 属于多喷嘴对撞喷入式的炉型主要有E - Gas, Shell, Prenflo, TPR I和多喷嘴对置式气化炉, 其中Prenflo, Shell和TPR I采用干煤粉进料。 Prenflo炉与Shell炉均是K - T炉的加压气化形式, 工艺流程中的磨煤与干燥、粉煤加压与进料、气化与煤气冷却、除渣、干法除尘、湿法洗涤等系统基本相同, 均为废锅流程, 采用大量的冷煤气对高温煤

在气流床气化炉中, 属于多喷嘴对撞喷入式的炉型主要有E - Gas, Shell, Prenflo, TPR I和多喷嘴对置式气化炉, 其中Prenflo, Shell和TPR I采用干煤粉进料。

Prenflo炉与Shell炉均是K - T炉的加压气化形式, 工艺流程中的磨煤与干燥、粉煤加压与进料、气化与煤气冷却、除渣、干法除尘、湿法洗涤等系统基本相同, 均为废锅流程, 采用大量的冷煤气对高温煤气进行急冷, 气化炉和煤气冷却器均采用水冷壁和螺旋盘管换热器的结构, 二者的气化炉反应区基本相同, 其区别主要表现在: ① Prenflo炉采用横向布置的盘管式水冷壁, 而Shell炉采用纵向布置的膜式水冷壁; ② 二者的煤气冷却器结构不同, 煤气冷却流动路线不同, 在废锅设置上,Shell炉在经过导气管后的侧面设置废锅, 而Prenflo炉气化工艺中废锅设置在顶部。

对于TPR I炉, 与其他下置多喷嘴对撞喷入式气化炉不同的是, 其采用两段式炉膛结构, 下炉膛是第一反应区, 为一个两端窄中间宽的腔体, 其侧壁上对称布置2个或4个用于输入煤粉、水和氧气的喷嘴, 喷入煤粉质量分数80% ~85%的混合物;上炉膛是第二反应区, 高度较长, 侧壁上布置对称的2个煤粉和水的喷嘴, 喷入煤粉质量分数15%~20%的混合物。

以下采用Shell炉为例说明下置多喷嘴对撞喷入式气化炉的炉内流场与物料的温度特性。Shell炉应用撞击流原理, 将干煤粉与氧气通过同一水平面上4只对称布置的烧嘴喷入炉内, 两股等量的气固两相流同轴相向射流撞击, 形成具有高度湍动的撞击区和高度湍动区, 在惯性力作用下, 固相颗粒穿过撞击面渗入反向流, 使干煤粉与氧气在气化炉内实现混合并进行部分氧化反应, 生成的粗合成气和熔渣一起向下进入气化炉激冷室激冷和分离。

采用激光多普勒动态粒子分析仪研究了冷态下受限容器中多喷嘴对置射流的流动特征, 将Shell炉内的流动过程分为5个区域, 即射流区、撞击区、撞击扩展流区、回流区和管流区。气固两相流从喷嘴高速喷出后将周围流体卷吸带向下游流动形成射流区; 当4个对置的喷嘴射流交汇后, 在交汇中心区域形成相向射流的剧烈撞击区。该区域流体间的剪切作用力大, 速度脉冲强, 湍流强度大; 经过撞击混合后具有较高静压的流体迅速改变流动方向, 沿着气化炉的轴线方向运动, 形成向上和向下的两股撞击扩展流区。由于这两股流体相对速度较高, 具有射流性质, 对周边流体仍有卷吸作用, 使得该区域的宽度沿径向逐渐扩展, 轴向速度沿径向逐渐减小, 沿轴向达到一个最大值后也逐渐衰减; 四股射流与两股撞击流股周边均出现回流区, 回流是受限射流产生流体间相互混合的流动特征之一, 起到强化混合的作用; 在气化室上部, 流体的轴向速度沿径向分布基本保持不变的区域称为管流区。

与GSP炉相类似, Shell炉内流场也可按反应特征分为射流燃烧区、管流气化区和回流燃烧气化共存区。射流燃烧区包括射流区、撞击区及撞击扩展流区的一部分, 在该区域进行的是挥发分析出和燃烧以及焦炭燃烧, 并伴有射流卷吸的CO 和H2的燃烧反应, 这些放热反应导致该区域为炉内高温区; 管流气化区包括管流区和撞击扩展区的一部分, 进行的是C和CH4等气化反应和逆变换反应,这类吸热反应导致该区域温度相对稍低; 在回流共存区, 射流卷吸作用和湍流扩散使回流区、射流区和撞击流扩展区发生质量交换, 其中以卷吸为主,但因湍流的随机性, 也将有个别氧气微团经湍流扩散作用而进入回流区中。因此在回流区中既有燃烧反应, 亦有气化反应, 但以气化反应为主。

气固两相在Shell炉内的温度变化趋势与GSP炉内不同, 在射流区内, 喷入炉内的气相(水蒸气和氧气) 在挥发分的燃烧和生成烟气的稀释加热作用下, 温度急剧直线上升, 到达撞击区时,由于焦炭的燃烧放热反应使得其温度进一步提升,并达到最高温度, 也使得该区域为炉内最高温度区; 随后进入撞击扩展流区、回流区和管流区发生气化吸热反应, 并与焦炭- 灰渣发生热交换, 炉顶出口煤气温度降低, 减少了后续冷却单元; 由于煤粉颗粒表面热阻较大, 温升较慢, 在煤粉颗粒- 焦炭- 灰渣的转换过程中, 温度稳步上升, 在随气相上升至炉内最高轨迹点时, 温度达到最高, 在随后的下降过程中, 其温度基本维持不变, 直至下段的出渣口。

然而, 下置多喷嘴对撞喷入式气化炉也存在一些不足之处: ①在细长形的圆筒内采用径向喷嘴直接对冲, 从各喷嘴喷出的物料还未能充分发展即相互碰撞, 并发生激烈的燃烧放热反应, 使得炉内高温区集中在这一水平面上, 炉内温度梯度较大。②射流直接碰撞产生了向下和向上两股撞击流股, 向下的撞击流股沿径向的迅速扩张阻碍了喷嘴射流对周围高温烟气的卷吸作用, 回流区过小,延迟了射流区内煤粉着火燃烧的进程。③喷嘴的直接对冲并不能保证所有煤粉颗粒都在撞击区内相互碰撞而衰减, 必有一部分直接冲向对侧喷嘴, 对喷嘴周围水冷壁的使用寿命造成极大的威胁, 如果气化炉温度稍低, 就可能在喷嘴周围乃至喷嘴上结渣, 从而影响喷嘴的使用寿命和性能。④向下的撞击流股有部分直接冲向气化炉底部出口, 形成“短路”现象。⑤受撞击作用的影响, 单个喷嘴的容量不能太大, 否则撞击效果减弱, 这样单台气化炉的负荷受到限制, 不可能达到太大。⑥负荷对气化效果的影响明显, 气化炉对负荷调节的适应性相对较差。⑦ Shell炉和Prenflo炉均为一段式干煤粉进料的气化装置, 为了保证液态排渣顺利进行,炉底温度必须在其灰熔点以上。为了让高温煤气中的熔融态灰渣凝固以免使煤气冷却器堵塞, 不得不采用大量的冷煤气对高温煤气进行急冷, 方可使其由1 400 ℃冷却到900 ℃, 其热量损失较大, 气化炉的碳转化率、冷煤气效率和总热效率等指标也比较低, 并且由于煤气流量较大, 造成煤气冷却器、除尘和水洗涤装置的尺寸过大 。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读