焊接过程的关键通常是使构件局部加热熔化,随后是连续地冷却。由于焊接等局部加热及材料本身受到的约束作用,材料在温度较高时发生了塑性变形或相变,在冷却后被保留了下来,在构件内部形成了一个自相平衡的内应力场,即残余应力场。残余应力的峰值往往达到甚至超过母料的屈服强度,当这些焊接构件投入工程使用中时,它们所受荷载引起的工作应力与其内部的焊接残余应力相互叠加,将导致焊接构件产生二次变形和焊应力重分布,从而降低焊接构件的刚度和稳定性。工程应用中也不乏这种将型钢直接焊接成钢梁或钢架的构件。
焊接过程是一个不均匀的加热过程。在施焊时,焊件上产生不均匀分布温度场,不均匀的温度场会产生不均匀的温度膨胀。温度较高处的钢材的膨胀较大,由于两侧温度较低,受到膨胀较小的钢材的限制,产生了热状态塑性压缩。焊缝冷却时,被塑性压缩的焊缝区趋向于缩的比原始长度稍短,这种缩短变形受到两侧钢材的限制,使焊缝区产生纵向拉应力。焊接残余应力是一种无外荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力。此外,由于焊缝纵向收缩,两块10号槽钢趋向于形成反方向的弯曲变形,但实际上焊缝将两块槽钢连成整体不能分开,于是在焊缝中部产生横向拉应力,而在两端产生横向压应力。其次焊缝在施焊过程中,由于先后冷却的时间不同,先焊的焊缝已经凝固,且具有一定的强度,会阻止后焊焊缝再横向的自由膨胀,使其发生横向的压缩变形。当焊缝冷却时,后焊焊缝的收缩受到已凝固的焊缝限制而产生横向拉应力,同时在先焊部分的焊缝内产生横向压应力。