一个构件的断裂失效分为裂纹发生和裂纹扩展两个过程,裂纹的发生与扩展决定着构件以何种形式在何时发生怎样的失效,因此,可以把鱼尾板的失效分为两个部分讨论,一是裂纹的起源,二是裂纹的扩展。
已经对鱼尾板的裂纹起源作过一些初步的探讨,认为其断裂失效的物理本质是微动疲劳磨损,鱼尾板与钢轨接触表面微小的辗压、摩擦等相互作用是引起裂纹产生的主要原因。
微动理论是近年来颇为人们关注的理论,很多事故的发生都是由于微动作用引起的。航空界人士早就注意到经典的材料S-N曲线与构件在实际使用的结果并不相符,构件在使用时期的寿命往往达不到S-N曲线上相对应的循环次数,这是因为构件的接触面之间存在着微动作用。
国外早期进行的微动疲劳试验发现微动作用表面有明显损伤,致使疲劳强度下降,后来的研究证实了这个结果,并提出了微动疲劳强度计算的表达式,还指出了影响微动疲劳过程的主要因子为:摩擦系数、接触压力和滑移振幅。虽然在微动疲劳试验中涉及许许多多的因子,有人举出的因子多达50个,但这些因子均可划分为“一次因子”和“二次因子”,二次因子只有通过一次因子才能对激动过程产生影响,即上述因子中只有3个因子“摩擦系数”、“接触压力”及“滑移振幅”才是影响微动过程的一次因子,其中最重要的是摩擦系数。
具体分析鱼尾板与钢轨这对摩擦付,其裂纹起源最直接的原因就是两者接触表面的相互作用,如接头冲击力、线路整体的振动、摩擦引起磨耗使拧紧力下降、螺栓松动等一切使鱼尾板与钢轨表面间产生相互作用的因素都是产生微动磨损的条件。
宏观上可以看到伤损鱼尾板表面由钢轨造成的表面挤压变形与擦伤;断口金相上可以观察到变形与擦伤表面处已形成细微裂纹并向其纵深方向发展;上口起裂的鱼尾板现象尤为明显。另外,宏观断口裂纹起源区存在黑色氧化区也表明了其起裂时摩擦生热并产生氧化的作用。
一切加剧鱼尾板与钢轨接触表面间相互作用的因素都将促使鱼尾板产生裂纹,鱼尾板与钢轨的表面状态,包括宏观与微观状态,鱼尾板与钢轨之间紧固力的大小、配合的几何形状,轮载与行车速度,接头的基本状况等都是影响鱼尾板裂纹的因素。
裂纹产生后,在一定的交变载荷作用下开始时是缓慢地扩展,此为裂纹缓慢扩展区,当裂纹扩展到一定深度,构件的剩余截面积不足以承受交变载荷的作用时,构件产生失稳断裂形成速断区,这2个区域一般都有明显的特征。从对鱼尾板的失效研究来看,影响其裂纹扩展的因素主要是载荷状况和材质状况,其中载荷状况包括的内容较多,它不仅包括载荷本身的大小,同时包括不良的工况条件和一定的轮载车速、车型等给钢轨接头带来的附加冲击载荷和其它形式的外力作用。例如紧固螺栓没有达到规定拧紧力,或由于鱼尾板磨耗增加,使拧紧力下降,都将使接头处附加冲击力增大;轮载的增加,车速的增加,接头的不平顺也会使接头应力增加。材质的状况则表现得十分明显,优良的材质可以保证裂纹缓慢扩展,深度可占整个构件的近5000,而不良材质,如晶粒度级别在1级左右的鱼尾板当裂纹仅5-10mm深时即发生全断面脆断,造成的危害极大。
因此,材质状况与鱼尾板的综合受力状况是决定鱼尾板裂纹扩展寿命的主要原因。