设计一个完善的独立光伏发电系统 ,主要依据相关国际、国家标准和地理、气象等数据 ,不仅需要充分了解通信设备的功耗 、电压等级、工作时间,更需要获得基站建设地点的气象资料 ,特别是日照强度、环境温度、湿度、风速 、雷暴日、沙尘暴天数或台风等情况, 根据系统要求的安全级别, 进行多种设计,如太阳能板阵容量设计、蓄电池容量设计 、防雷接地系统的设计 、电气性能设计、系统安全性设计 、电磁和静电屏蔽设计 、机械结构设计等, 其中以太阳能板阵容量设计 、蓄电池容量设计更为重要 ,直接影响系统造价 。光伏发电系统的设计总原则, 是在保证满足通信设备用电需求的前提下 ,合理匹配太阳能板阵容量与蓄电池容量, 以达到系统长期可靠运行的目的,即同时考虑可靠性和经济性。
(1)影响太阳能板阵容量设计的因素及设计
太阳能电池板是太阳能系统中重要的发电部分,直接将太阳光能转换为电能, 即使在环境极端恶劣条件下, 依然可以稳定、可靠地发电。这种从光到电的转换过程是无噪声、无化学能源损耗 、不存在自身损耗的发电 ,也不产生有害物质 , 对环境没有任何污染和改变 。影响太阳能板阵发电量的主要因素有日照强度 、光谱 、温度 。 目前 , 标准太阳能板转换效率的测试条件是 :大气质量 AM为 1.5, 标准光强 1 000 W/m2,温度为 25 ℃。其中以日照强度的影响更为直接和显著 。
1)太阳日照强度对太阳能板阵容量的影响
太阳能板阵表面所接受的太阳辐射强度是太阳能板阵容量设计的基础 。然而太阳能是一个自然能 ,太阳辐射强度是随时间不断变化的 。因此只能通过相关的气象部门获取数据。但通常气象部门提供的数据不能直接应用于系统容量计算 ,需要经过换算。如一般气象部门提供的日照强度大多为水平面上测得的数据 , 而在绝大多数情况下, 太阳能板阵都是以一定倾角放置的 。因此要将水平面上的数值换算成倾斜面上的日照强度。 又如,太阳能系统设计中, 常常会用到一个为“日照小时数 ”的术语, 这个术语的含义是 :日照强度为 1 000 W/m2时的日照时间 (也称为峰值日照时数)。这与气象台提供的日照时数不是同一个概念。
2)太阳能板阵倾角的选择
确定太阳能板阵最佳倾角 ,不能简单地根据建设地所在的纬度加上一定度数来确定。确定最佳倾角应通过分别计算太阳能板阵处于不同倾角时的发电量并对其进行比较 ,最终使各月接收到的日照强度尽量均匀 ,以适合系统常年运行的需要 。一般来说,我国境内大部分地区最佳倾角要大于本地区纬度 。
(2)专用设计软件
一般太阳能方阵的设计是采用专业设计软件来完成的,软件数据库中包含了气象参考站点 10年的气象数据。软件根据建站地点以及当地气象部门提供的本地气象数据, 比对、选择数据库中的参考点 ,结合负荷及供电要求进行计算。系统设计软件的可靠性和实用性是太阳能系统设计的关键。在设计过程中,应充分考虑以下因素 。
1)根据客户不同要求进行系统设计
一般采用优化的经济可靠的系统设计 ,即太阳能板阵发电量不仅能够满足负载的需要, 同时能够为蓄电池充电,且保证蓄电池容量总是 100%。
2)根据通信应用领域进行专业化系统设计
通信领域包括:电信基站、导航基站、阴保站、电力传输通信站、卫星地面中心站以及 VSAT站等。
3)根据建站当地的地理 、气象等方面的因素设计
其中包括当地的月太阳辐射强度总量 、当地的月最高气温 、最低气温 、地面反射系数 、大气洁净程度等因素。
4)了解负载电压等级, 进行具体设计
如系统中另外包含其他直流电压等级负载 ,可以采用 DC/DC变换器。如系统中有交流负载 ,可以增加 DC/AC逆变器。但是对于这些变换设备,都需要考虑能量变换损失 。
5)系统损耗的设计
系统损耗包括设计自身损耗的控制, 控制器自身功耗 、线损 (汇流盒到控制器及蓄电池到控制器的线损 )、防反压二极管的损耗等。
6)蓄电池容量设计
根据蓄电池实际运行温度来进行蓄电池容量设计 ,以保证蓄电池可以正常运行在温差范围较大的最恶劣温度环境下 ,并满足系统对蓄电池运行寿命的要求。
7)确定最佳倾角
计算太阳能板在不同倾角的发电量 ,并优化最终设计,确定最佳的倾角 。
8)结果
生成 1份形象的发电量与放电量的趋势图表 ,供设计人员参考 ,也可用于对太阳能系统的评估。
(3)蓄电池容量设计原则
蓄电池作为太阳能电源系统的重要组成部分 ,应特别加以对待 。由于太阳能的安装地点偏僻,运行条件恶劣 ,太阳能蓄电池每日充放电, 应选择充放电特性强的蓄电池产品 。目前在通信领域中使用最多的是阀控式免维护铅酸蓄电池。阀控式密封蓄电池有 2种 :采用超细玻璃纤维隔膜的阀控式密封蓄电池 (AGM);采用胶体电解液的阀控式密封蓄电池。这 2种蓄电池在不同的通信站中都有应用 。
1)太阳能系统与普通通信机房蓄电池容量配置的区别
通信机房用蓄电池的事故放电时间一般为 1 ~10 h,光伏电站用蓄电池的事故放电时间一般都在72 h以上。由于二者对放电时间要求不同, 因此应根据负载大小以及放电时间分别选用不同类型的蓄电池。普通通信机房蓄电池运行在一个恒温 20 ~ 25 ℃的环境中, 且大部分时间处于浮充状态;而太阳能系统中的蓄电池 ,其运行温度随周围环境温度的变化而变化, 并且根据通信基站安装地点的不同 ,温差范围很大 ,因此要求太阳能系统中的蓄电池应选用抗高低温特性好的蓄电池。蓄电池在光伏电站系统中除了具有储能的功能外 ,还具有一定的系统稳压器功能, 普通通信机房蓄电池没有稳压器的功能。
2)蓄电池容量计算
对于不同类型 、不同厂商的蓄电池来说 ,蓄电池容量的计算方法不尽相同, 但都可以总结为 :根据通信负荷的大小、通信负荷的电压以及所要求的蓄电池自主放电周期来计算容量大小,在此基础上根据选配蓄电池的性能和蓄电池运行的环境条件 ,通过设置修正系数 , 最终计算出蓄电池容量 , 并折算成所选配的标称容量(如 C10)。下面以德国 HOPPECKE公司提供的 OPzV胶· 设计与开发· 杨晓宇, 等 通信基站太阳能供电系统设计 · 49·体蓄电池容量计算公式为例 ,进行蓄电池容量计算。例如,负载为 100 W的 24 V系统 ,考虑连续阴雨天数 3天(72 h)。设计环境条件的要求是 -27 ~45 ℃,且系统设计中蓄电池容量在正常运行 10年后仍可以满足自放电率 3天的要求。蓄电池 C10容量计算原则为C10 =P×T×fV ×fC ×fL/UN /fE/fM (1)式中 C10为所选电池的容量;P为功率 ;T为放电时间;fV为温度折算系数 , 温度对蓄电池容量影响比较大 ,温度为 -27 ~ 45℃时, fV取 1.3;fC为容量补偿系数,取 1.2;fL为寿命折算系数(老化系数 ),取 1.2;fE为放电深度 ,取 0.8;fM为极板活化系数,要求的设计环境温度为 -27 ~ 45 ℃, fM取 1.2。将上述所确定的系数代入 C10公式 , 即可得出相应的蓄电池 C10容量C10 =100 ×72 ×1.3 ×1.2 ×1.2 /24/0.8/1.2 =585 Ah可以得到结论:可采用德国 HOPPECKE公司OPzV系列胶体电池 600 Ah(C10 )蓄电池。
(4)太阳能系统控制单元设计原则
太阳能系统控制器是太阳能系统中的核心部件 ,管理着整个供电系统的运行 。它的性能和可靠性直接影响太阳能系统的性能和使用寿命。质量优异、功能完善的太阳能控制器不仅能够高效率地转换太阳能 ,而且能够最大限度地保证蓄电池组正常运行 ,延长使用期限 。太阳能系统控制器按控制原理可分为脉宽调制式控制和投 /切方式控制 。
脉宽调制式控制 (PWM控制 )是按一定的频率 ,周期性地控制功率元件导通和关断。这种控制方式是在功率元件导通时将太阳能板阵全部投入系统供电,而在功率元件断开时, 将太阳能板阵全部撤出供电系统 。由于开关频率很快 ,一般为 ms级 ,太阳能系统的电压和电流得到较好的控制, 使负载端的电压保持稳定 。脉宽调制式控制器关键部件采用的是功率场效应管,属于半导体器件 。
投 /切方式控制器则采用分组并联的方式, 按系统电压的大小, 有次序地逐级投入 /撤出太阳能子阵, 当电压高时 , 切断其中的 1路或几路太阳能电池板 ,电压低时 , 再接通 1路或几路太阳能电池板 。通过这样的方式保证输出到负载端的太阳能电能维持稳定。投 /切方式控制器的关键部件是水银继电器,该产品可以在极其恶劣的温度 、灰尘和湿度条件下完成各种类型的应用。其优点是可靠性高、寿命长 、结构密封、内电阻较低, 可以满足不同负载(阻性 、容性 、感性 )的需求, 增加了设计的灵活性,高温环境下功率损耗低,无静音操作 。
控制系统应具有以下基本功能 :
1)监视功能 , 对系统太阳能子阵、蓄电池、系统电压、有关保险丝 、电路断路器的状况进行监视 ;
2)报警功能 ,一旦电源系统出现异常 , 电池状态改变,通过 LED可在本地显示报警;通过 RS-232及继电器无源触点输出到远方报警 ;
3)测量功能 ,对系统的电压、电流和蓄电池电压、电流进行测量;通过温度传感器测定环境和蓄电池温度, 并在液晶屏上显示上述数据;
4)蓄电池日常维护和管理功能 , 对蓄电池的正常运行进行管理和维护 ;
5)遥测 、遥信、遥控和遥调功能 , 将 RS-232接口作为通信规约的入口通道 ,完成本地或远端集中监控。
(5)系统防雷接地 、浪涌保护设计原则
太阳能系统的防雷要符合相关标准 ,并在以下几个方面采取措施。
1)室外的太阳能支架本身是金属结构, 是良好的导电体 ,每一组支架与防雷地排要有可靠的接地保护连接 。
2)汇流盒本身应具备良好的防雷功能, 其箱体与防雷地排也应有可靠的接地保护连接,以确保防雷安全。
3)控制器本身具备良好的防雷保护措施 。汇流盒与控制器之间的连接线缆, 应采用铠装电缆 ,并在室外与接地排相接。此外浪涌保护装置 、继电器和熔断器等防护措施必不可少。