自中国著名的声学家马大猷在20世纪70年代提出穿孔板、微穿孔板理论并构建了其吸声机制模型及其精确解以来,微穿孔板得到了广泛的应用。后续研究工作者从优化设计和工程应用的角度出发,发展了穿孔板及其微穿孔理论,对其实际应用进行了理论方面的深入研究,获得了丰硕的研究成果。
穿孔板与微穿孔板是充分利用其与后部空腔内的空气层形成共振作用而有效吸声,一般只在特定频段具有良好的吸声性能。这一特定频段与空腔深度密切相关,为使结构在低频段具有良好的吸声性能,空腔深度必须很深; 由于这种结构的吸声性能只发生在较窄的频段,为了拓宽吸声频段,提出了双层微穿孔板理论,但实际运用中存在安装问题。为了解决这个问题,在穿孔板的空腔中加入多孔材料,以改变微穿孔板末端的辐射阻抗以及孔腔的声阻抗,从而在较宽的频段内获得较好的吸声性能,有利于实际应用。综合性能优异的高分子吸声材料获得了广泛应用。高分子聚合物由于具有优良的黏弹性和内阻尼特性,有利于将阻尼与其他吸声机制融于一体,从而改善材料的吸声性能。
复合材料后的穿孔板充当了空气层的作用; 随穿孔板的孔隙率增加,复合结构的共振频率没有发生变化,只是在共振作用区域的吸声系数有了增大,说明共振频率与膜后的孔腔深度有关,而与孔腔内空气量无关; 在这种结构中,穿孔板的孔隙率越大,则复合材料后空气与孔壁作用的表面积越大,这样在共振作用频率附近的空气黏滞作用越大,从而在共振作用频域的吸声系数越大。