表面式加热器管束内的水压比筒体内的汽压高得多,在运行中若管束破裂、泄漏,压力水会沿着抽汽管道倒流人汽轮机,造成严重事故。为了避免汽轮机进水、加热器简体超压和锅炉给水中断,在设计回热加热系统时,必须考虑设置水侧旁路系统,尤其是要求严格的高压加热器组,不仅应有适宜的旁路,而且更应有自动保护装置。
加热器水侧旁路通常有单个加热器的小旁路和两个加热器以上的大旁路两种。单个加热器的小旁路运行灵活,事故波及面小对热经济性的影响也小,但系统复杂、连接管路及管制件多,投资大。大旁路则刚好相反,系统简单,但事故波及面大,对热经济的影响大,随着高压加热器制造质量的提高,大旁路也应用较多。如某660MW机组的三台高压加热器中,压力最高的加热器设置一小旁路,压力次之的两台加热器设置一大旁路,如图6所示。额定工况运行时的给水温度为271.1℃,除氧器出水温度为185.5℃。若大旁路内的加热器发生故障,由于压力最高的加热器设计有一定富余量,此时给水温度为253.2℃,下降相对要小些;若压力最高压加热器热器发生故障,给水温度仍可达254.6℃,下降也不很多。这种一大一小旁路的设置是较合理的。
低压加热器组也有另外的考虑,仍以660MW机组中4台低压加热器为例。将压力最低的2台加热器和压力次之的另两台加热器分别设置了大旁路,必要时(如除氧器上水时)通过切换阀门可将主凝结水直接输入除氧器。如图7所示。
锅炉给水不允许中断,所以现代大型火电机组的高压加热器均配有水侧自动旁路保护装置,主要有水压液动控制和电动控制两种。图8(1、3、5-截止阀;2-过滤阀;4-快速启闭阀;6-开阀电磁铁;7-闭阀电磁铁;8-启闭阀旁通阀;9-节流孔板;10-活塞缸;11-高压加热器入口联成阀;12、13、14-3、2、1号高压加热器;15-高压加热器出口止回阀)所示为国产高压加热器水压液动自动旁路装置示意图。该旁路采用3台加热器的大旁路。该装置在水侧进口和出口装有靠液压操纵活塞而动作的人口联成阀11和出口止回阀15,入口联成阀是外置活塞机构,控制水来自凝结水(0.78—0.98MPa);电磁阀为快速启闭阀。若高压加热器出现故障,水位上升至发出信号使电磁阀7动作,联成阀11上部活塞10在水压作用下自动关闭入口联成阀11,隔断了给水进入加热器的通路,同时出口止回阀因下部失去水压而落下关闭,给水由旁通管至加热器出口,完成旁路,整个动作时间为2s。此时给水温度为除氧器出口水温度。
该装置在水侧进、出口管路上还装有电动闸阀和旁路电动闸阀,其目的是将整个高压加热器组解列,以便对其进行检修。另外为保护高压加热器的安全,水侧、汽侧均装有安全阀,筒体还设有排气系统(启动和正常运行时排气),该系统能排除蒸汽停滞区内的不凝结气体,改善传热环境,减少加热器的腐蚀。
图9(1-电动出口阀;2-电动旁通阀;3-电动入口阀;4-水位信号器;5-回转调节器;6-执行机构;7-凋节器;8-继电器;9-信号灯;10-启动注水器;11-高压加热器;12-疏水冷却器)为高压加热器水侧旁路采用电动控制保护示意图。该装置中,给水进口阀3、出水阀1及旁通阀2均为电动的,它们同时受3台高压加热器的3个继电器控制。每台高压加热器都装有1个带电接点的水位信号器4,它可发出两个信号,一是在正常范围内调节,保持加热器水位;二是在加热器发生水管破裂或泄漏等故障时,水位升至极限位置,继电器动作发出电信号,加热器的进出口阀门关闭,旁通阀打开,给水由旁通管道直供锅炉,同时信号灯发出闪光信号,表示电动旁通装置已动作。显然该旁路属于大旁路,系统较简单,操作方便,投资也省,如有的600MW机组的高压加热器水侧旁路即是如此。也有大机组的高压加热器组水侧旁路采用小旁路的,如某300MW机组的3台高压加热器都有自己的旁路,该系统运行灵活,事故影响面小。针对具体的机组究竟采用大旁路、小旁路或大小兼顾要通过技术经济比较来确定。