人脸考勤机顾名思义:就是以分析人脸不同特征为识别依据的考勤机设备,我们来看看面部识别的技术特征
脸是标识您身份的重要元素,别人也会通过你的脸来辨认您。请想象一下,如果所有的面孔都是相同的,识别出一个人该是多么的困难。除了长得几乎完全一样的双胞胎之外,面孔毫无疑问是一个人最独特的物理特征。不只是人有识别和区分数百万张不同面孔的先天能力,计算机也正在迎头赶上人的这种能力。
如果照镜子,您会发现脸具有一些可辨别的标志。脸上的凸出部分和凹陷部分构成了不同的面部特征。面部识别考勤机将这些标志定义为节点。人脸大约有80个节点。每个节点包含 40 个 Gabor 小波(一种数字信号变换方法)系数,包括相位和幅度,这些系数合起来称为一个 Jet ,这些小波系数是原始图像和一组具有 5 个频率、 8 个方向的 Gabor 小波卷积(一种数字信号处理算子)得到的。这样每幅图就像被贴了标签一样,其中的点被 Jets 标定,边被点之间的距离标定。所以一张人脸的几何形状就被编码为图中的边,而灰度值的分布被编码为图中的节点。
以下是该软件测量的几个节点:
两眼之间的距离
鼻子的宽度
眼窝的深度
颧骨
下颌轮廓
下颚
面部识别考勤机 在人脸识别中,由一组特征脸基图象张成一个特征脸子空间,任何一幅人脸图象(减去平均人脸后)都可投影到该子空间,得到一个权值向量。计算此向量和训练集中每个人的权值向量之间的欧式距离,取最小距离所对应的人脸图像的身份作为测试人脸图像的身份。
人脸本质上是 3D 空间中的一个表面,所以原则上用 3D 模型能更好地表征人脸,特别是处理人脸的各种变化,如姿势、光照等。 Blanz 等人提出了一种基于 3D 形态模型的方法,该方法将形状和纹理用模型参数编码,同时提出了一个能从单张人脸图像还原模型参数的算法。形状和纹理参数可用来进行人脸的识别。为了处理由于这些参数导致的图像之间差异的极端情形,通常是预先产生一个通用的模型。而进行图像分析时,给定一张新的图像,一般的做法是用通用模型去拟合新的图像,从而根据模型来参数化新的图像。