节能灯的光由多种磷光体发出,每种磷光体各发出一带颜色的光。有些磷光体发出的光仍含紫外线。为了避免损伤视网膜,有些节能灯外带一层过滤紫外线的玻璃套。现代的荧光灯在磷光体选择上会权衡光的颜色、能效和成本。涂层中的磷光体种类越多,节能灯的演色性就越好,但能效也随之变低越低,成本亦会升高。优质的消费级节能灯一般使用三四种磷光体,达成演色性指数(CRI)约为80的“白”光。
色温可以用开尔文数,也可以用微倒度(开尔文色温的倒数的一百万倍)计。一个光源的色温指的是与其发光颜色相同的黑体的温度。按照人类的主观色彩感知定义、表记的色温称为相关色温。
真正的“色温”只对黑体辐射有定义;节能灯能做到接近某种温度的黑体辐射光谱,但绝对做不到与其一致。即使是低色温的暖色节能灯,也大多不可避免地在谱线上短波长的区域存在几个高强度的“尖峰”。
随着色温提高,“白光”的色调由红转黄、转蓝。现代节能灯等三色磷光灯厂家的色号命名不像旧时的卤磷酸盐灯一样存在一个标准,因此有时也有同种色号的色温出入较大的情况。例如,大部分“日光”灯的色温都至少有5,000K,Sylvania的“日光节能灯”色温却只有3,500K。
色号 |
色温 |
|
---|---|---|
(开) |
(微倒度) |
|
柔白 |
2,700 |
370 |
暖白 |
3,000 |
333 |
纯白 |
3,500 |
286 |
冷白 |
4,000 — 4,100 |
250 — 243 |
日光 |
5,000 |
200 |
大部分节能灯的额定工作寿命从6,000到15,000小时作用不等,而大部分白炽灯的寿命则在750到1,000小时之间。不过,所有灯的寿命都受电压、制造缺陷、电压尖峰、机械冲击、开关频率、灯泡指向、环境温度等种种因素影响,不可直接以“典型寿命”一概而论。
如果频繁开关节能灯,其寿命会显著缩短。如果以5分钟为周期来回开关某些节能灯,其寿命可能会缩短到类似于白炽灯的量级。美国的能源之星计划建议说,如果离开房间不超过15分钟,则不应关灯,以免频繁开关缩短寿命。节能灯的亮度随寿命指数衰减,一开始使用时衰减的亮度最多。节能灯报废时的亮度一般为原亮度的70–80%。人眼对于亮度的感知是对数尺度的:人眼对于弱光强度的变化比对于强光强度的变化敏感。这与瞳孔放大、缩小补偿亮度变化有关。也就是说,只要一个节能灯一开始能提供充足光线,即使到了后期亮度降低25%,观者感知到的区别也没25%那么明显。
由于节能灯亮度会逐渐衰减,某些使用节能灯的场合可能会表现出一开头亮度合适,逐渐又变得太暗的情况。美国能源部对2003–2004年认证的“能源之星”节能灯进行的测试显示,有四分之一的节能灯在其额定寿命40%时给出的光通量不足额定数值。
由于人眼对于不同波长的光敏感程度不同,要使用一个名为“流明”的单位描述人眼感知到的光源强度。灯泡的光视效能定义为每瓦特功率所给出的流明数。节能灯的典型发光效率为50—70流明每瓦(lm/W),常见白炽灯的则为10–17 lm/W。与理论上100%效率(680 lm/W)的虚构纯绿光灯具相比,节能灯的效率在7–10%左右,而白炽灯的则在1.5–2.5%范围内。理想5800K可见光源(只发出可见光谱)的效率为251lm/W(37%)。
由于发光效率更高,节能灯的功率一般为相应亮度白炽灯的1⁄7到1⁄3。2010年售出的灯泡中,有50p%是白炽灯。将世界所有的低效光源换成节能灯,每年可以省下409太瓦特·小时(1.47艾焦耳),约合世界年耗电量的2.5%。据估计,将美国的白炽灯全部换成节能灯,每年可以省下80TWh(太瓦时)电力。由于节能灯比白炽灯耗电量少得多,淘汰白炽灯可以降低二氧化碳(CO2)的排放量。将全世界的白炽灯换成节能灯,每年可以少排放2.3亿吨的二氧化碳,比荷兰和葡萄牙的排放量加起来还要多。
最低发光量 (流明) |
耗电量(瓦特) |
||
---|---|---|---|
白炽灯 |
节能灯 |
LED灯 |
|
450 |
40 |
9–11 |
6–8 |
800 |
60 |
13–15 |
9–12 |
1,100 |
75 |
18–20 |
13–16 |
1,600 |
100 |
23–28 |
15–22 |
2,400 |
150 |
30–52 |
24–28 |
3,100 |
200 |
49–75 |
30 |
4,000 |
300 |
75–100 |
38 |
将白炽灯换成节能灯可以大幅减少灯具散发出的热量。在温暖地区等经常需要空调的场合,换用节能灯可以显著降低制冷设备的工作负担。然而在天气较冷的地区,中央供暖系统由于来自灯泡的热量减少,会需要使用更多能量制热。据估计,在气候寒冷的加拿大温尼伯市,节能灯只能省下17%的电量(不考虑制热因素,节能灯的省电比例为75%)。