造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

储热材料简介

2022/07/15306 作者:佚名
导读:有机类相变储热材料 有机相变材料具有的优点:在固体状态时成型性较好,一般不易出现过冷和相分离现象,并且对材料的腐蚀性较小,性能比较稳定,毒性小,成本低。同时存在的缺点有:导热系数小,导致对热量变化的响应速度慢,密度较低,从而单位体积的储能能力较小,并且有机物一般熔点较低、不适于高温场合,易挥发、易燃、易被空气中的氧气缓慢氧化老化。 有机储热材料主要包括直链烷烃、脂肪酸、脂肪醇、多元醇以及高分子相变

有机类相变储热材料

有机相变材料具有的优点:在固体状态时成型性较好,一般不易出现过冷和相分离现象,并且对材料的腐蚀性较小,性能比较稳定,毒性小,成本低。同时存在的缺点有:导热系数小,导致对热量变化的响应速度慢,密度较低,从而单位体积的储能能力较小,并且有机物一般熔点较低、不适于高温场合,易挥发、易燃、易被空气中的氧气缓慢氧化老化。

有机储热材料主要包括直链烷烃、脂肪酸、脂肪醇、多元醇以及高分子相变材料等,可以分为固-固相变和固-液相变两种。目前,常用的固-固相变有机储热材料包括:层状钙钛矿、高分子类聚合物和多元醇等。

熔融盐类相变储热材料

熔融盐类相变材料一般由碱金属的氟化物、氯化物、硝酸盐、碳酸盐等组成,可以是单组分、双组分或多组分的混合物。一般应用于中高温领域,120~1000 ℃及以上。此使用温度范围的相变材料在吸收、储存了热量后,足够为其它设备或应用场合提供热动力,可以应用于小功率电站、太阳能发电、工业余热回收等方面。此类材料的研究重点仍在于开发高性能的新体系、优化现有体系。

合金类相变储热材料

合金类相变储热材料主要由单一金属或多种金属等组成的二元、三元或四元合金,其相变温度一般在 300 ℃以上,近几年出现10~300℃相变合金,相变焓可达700 J/g 以上。导热系数为十几W/(m·℃),甚至更高。

20 世纪七八十年代起的美国Birchenall等 采用相图计算的方法及量热计、差热分析仪、差热扫描仪对含有 Al、Cu、Mg、Si、Zn 等元素的二元和多元合金热物性进行测定和分析,结果表明,该系列储热材料相变温度在507~577℃内,富含Al、Si 元素的合金储热密度最高,相变潜热在500kJ/kg 左右,同时具有较高的导热系数。接着,Fakas等 、Mobley 、Gasanaliev 等 、Maruoka 等 、Hoshi 等 对硅铝共晶、Cu 基、Pb 基、Sn 基、Zn基合金储热材料进行了研究,其性能见表 4,并将其应用于高温工业余热回收利用及太阳能热利用领域。黄志光等 对 Al-Si 共晶合金储热材料也进行了研究,结果表明潜热值随热循环次数的增加和保温时间的延长而提高。合金的固态比热容随含Si量升高而下降,但潜热则随含Si量的升高而提高。之后陈正荣等、邹向等、张仁元等、孙建强等、张寅平等、程晓敏等 对 Al-Si 合金、Al-Mg-Zn 合金、Al-Si-Cu 合金及其系列合金的性能以及合金相变材料与容器的相容性能进行了深入的研究。他们认为在中高温相变储热应用中,金属材料的储热性能比无机盐和有机材料占有明显的优势,且相变稳定性好、性价比高、使用寿命长。

低熔点合金相变储热材料

近几年来,Mc Cluskey等 认为由于高的密度和低的相变潜热导致金属相变储热材料在对材料重量较敏感的储热领域关注度不高。但对低熔点金属,尤其是以Sn、Bi、Pb、Cd、In、Ga、Sb 等金属元素组成的低熔点合金相变储热材料的研究都逐渐受到关注。

低熔点合金由于其独特的物理化学性质已被广泛应用于钎料、易熔合金保险丝、控温元件和模具制造业等,同时,低熔点合金具有熔点低、沸点高、化学活性低、导热系数大、密度高等特点,是一种潜在的热量存储和传输介质。

Ga系低熔点金属储热材料

该系列储热材料有望与传统的有机和无机储热材料进行竞争。由于电子产品中的低温焊料(钎料)具有极高的导热系数和较低的比热容,使其在亚微秒的时间内实现快速的充/释热,这类金属储热材料在对材料重量要求不高的领域有较好的应用前景。

Pb-Sn合金

Chen等 对Pb-Sn合金进行了研究,表明该相变储热材料的熔点为183 ℃,相变潜热为104.2 J/g。另一类低熔点相变储热材料是含有铅和镉的合金,这类储热材料往往受到环保条件的限制,但在军事或某些独立的民用领域仍然有较大的应用前景。

复合类相变储热材料

通过制备复合结构储热材料实现相变材料的微封装以解决相变材料的相分离、导热性能差、储热密度不高以及储/释热性能的结构优化等问题是目前储热材料研究的热点。复合结构储热材料的微封装主要通过微胶囊化以及定形结构实现。

微胶囊相变材料主要是以高分子聚合物或者无机材料为壁材、PCM 材料为芯材,采用固定形状包裹技术制备而成的复合结构储热材料。

微胶囊方法主要包括原位聚合、界面聚合、悬浮聚合、喷雾干燥、相分离以及溶胶-凝胶和电镀等工艺。由于制备方法的不同微胶囊相变材料也表现出不同的结构,但以核壳结构最为多见。定形相变材料不局限于微胶囊的核壳结构,而是通过相变材料与基体的毛细作用保持复合材料的定形结构。制备方法主要包括基体材料与相变材料直接混合制备以及基体的预制结构与相变材料的熔融浸渗。随着微封装工艺的不断成熟,微胶囊结构、定形结构的复合材料制备方法都很好地解决了材料相变时的渗漏等问题,然而如何通过复合结构强化材料的热性能仍是目前的研究重点。

复合结构相变材料的相变

Zhang 等 探讨了原位溶胶-凝胶工艺对无机水和盐的微封装技术,发现二氧化硅作为壁材对水和盐进行微封装有效地减少了相分离,并得出相分离程度的减少是相变焓值增加的主要原因的结论。

同年 Song 等 探讨了纤维素作为壳层、二十烷作为相变材料的复合储热材料的新型合成方法并研究了其在天然橡胶中的应用。研究结果表明,微胶囊结构提高了储热材料的相变潜热,分析认为微胶囊化的二十烷相变潜热的提高归因于其在微胶囊内的结晶行为。微胶囊壁材阻碍了相变材料二十烷的结晶行为,致使相变材料呈现分步结晶和更大的放热特性,结论认为分步结晶过程间接地解释了熔融过程中相变潜热的增加。然而,高链烷烃作为一种常见的相变材料,文献都采用DSC和XRD等实验手段对高链烷烃作为相变材料在微胶囊内的分步结晶以及结晶温度的偏移进行较深入的研究,认为高链烷烃在几何受限效应中出现的旋转相是造成其特殊结晶行为的主要原因。随后,Chen等研究了自组装碳管复合有机相变材料的定形结构的相变特性,其相变潜热提高约为10%,指出自组装碳管与相变材料界面结合特性是其主要原因。尽管目前对于微封装相变材料提高相变潜热的机理研究并不完善,但是确实提供了一个从界面探讨复合结构材料相变特性的新视角。

复合结构相变材料的导热

微胶囊相变材料主要以高分子聚合物等有机材料作为壁材,导热性能差,另外微胶囊之间较大的界面热阻显著影响了材料在应用过程中整体的热传递特性。定形相变材料由于不局限于基体与相变材料的核壳结构,在增强材料的导热性能方面具有较大的优势,特别是以碳材作为结构基体材料在有机相变材料的性能优化方面得到了广泛研究。

Yavari等 通过熔融混合-加压成形的方式直接制备了石墨烯 PCM复合的储热材料,质量分数为5%的石墨烯含量实现了复合相变材料导热性能相比于纯相变材料高达4倍的提高。

Gao等 通过纳米碳管自主装与石蜡熔融浸渗制备的石蜡-碳管复合的定形结构材料(PW-CNTs)在实现相变潜热的提升的同时增加了复合结构材料的导热性能。

Li等 利用矿物与硬脂酸复合制备定形结构储热材料,利用微波强化结构,同时提高了材料的储热密度以及导热性能,并对复合材料的界面结构进行了探讨。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读