混凝土结构在大气环境中通常认为是耐蚀的,但在实际使用过程中,由于受环境因素的影响,会形成多种腐蚀形式,根据腐蚀机理分,其腐蚀形式可分为:物理作用、化学腐蚀、微生物腐蚀,
(1)物理作用。物理作用是指在没有化学反应发生时,混凝土内的某些成分在各种环境因素的影响下,发生溶解或膨胀,引起混凝土强度降低,导致结构受到破坏。物理作用按照对混凝土影响的人小排序依次为:冻融循环、干湿循环和磨损。
冻融循环:由于混凝土是多孔隙结构,在循环的冻融(冰冻侵蚀)作用下易于损坏。过冷的水在混凝土中迁移引起的水压力以及水结冰产生体积膨胀,对混凝土孔壁产生拉应力造成内部开裂。
干湿循环:根据已有的金属腐蚀电化学理论,对于极为干燥的状态;混凝土内缺乏钢筋腐蚀电化学反应所必须的水分,因此腐蚀无法进行;对于极为湿润的状态,混凝土内部的孔隙充满了水,此时钢筋的腐蚀速度由氧气在水溶液中的极限扩散电流密度所控制;对于干湿交替状态,由于干燥和湿润的交替进行,使得混凝土内部相对既不非常干燥也不非常湿润,这样氧气的供应相对较为充裕,同时又能降低混凝土的电阻率,故将导致较高的钢筋腐蚀速度。
磨损破坏:路面、水工结构等受到车辆、行人及水流夹带泥沙的磨损,使混凝土表面粗骨料突出,影响使用效果。当混凝土表面受到冲击、磨擦、切削等磨蚀破坏作用时,与混凝土耐磨相关的最大剪应力发生在表面以下的次表面层.磨蚀破坏的作用力首先破坏混凝土表面的水泥石,集料逐渐凸出程度的增加,受磨蚀的作用力不断加大,磨蚀速度随之增加。由此可见,如果混凝土水泥石含量较大,混凝土中集料与水泥石的磨蚀破坏难以趋于半衡,水泥路面的磨耗也会持续下去。
(2)化学腐蚀。化学腐蚀是指混凝土中的某些成分与外部环境中腐蚀性介质(如酸、碱、盐等)发生化学反应生成新的化学物质而引起混凝土结构的破坏。从破坏机理上来分,化学腐蚀可归纳为两大类:溶解性侵蚀和膨胀性侵蚀。常见的化学腐蚀有:硫酸盐腐蚀、碱一骨料反应、碳化现象、氯离子侵蚀。
硫酸盐腐蚀:硫酸盐腐蚀是化学腐蚀中最广泛和最普遍的形式。
碱一骨料反应:碱一骨料反应是指来自混凝土中的水泥、外加剂、掺合剂或搅拌水中的可溶性碱(钾、钠)溶于混凝土孔隙中,与骨料中有害矿物质发生膨胀性反应,导致混凝土膨胀开裂破坏。
碳化现象:空气中二氧化碳与水泥石中的碱性物质相互作用,降低混凝土的碱度,破坏钢筋表面的钝化膜,使混凝土失去对钢筋的保护作用。同时,混凝土碳化还会加剧混凝土的收缩,这些都可能导致混凝土的裂缝和结构的破坏。
氯离子侵蚀:氯离子到达混凝土钢筋表面,吸附于局部钝化膜上,降低了pH值,破坏钢筋表面的钝化膜,使钢筋表面形成电位差。氯离子将促进腐蚀电池,却不会被消耗,降低阴阳极之间的欧姆电阻,加速电化学腐蚀过程。
(3)微生物腐蚀。微生物腐蚀有相当的普遍性,凡是与水、土壤或潮湿空气相接触的设施,都可能遭受到微生物的腐蚀。生物对混凝土的腐蚀大致有两种形式:①生物力学作用。生长在基础设施周围的植物的根茎会钻人混凝土的孔隙中,破坏其密实度。②类似于混凝土的化学腐蚀。典型的是硫化细菌在它的生命过程中,能把环境中的硫元素转化成硫酸。