造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

光纤合束器1背景

2022/07/1597 作者:佚名
导读:1964 年,美国的 Snitzer 等人首次提出了光纤激光器和放大器的构想,但受当时光纤拉制工艺、光纤损耗、半导体激光器技术等方面的限制,在其后 20 多年里光纤激光器没有得到实质性的发展。1987年英国南安普顿大学及美国贝尔实验室用掺铒单模光纤实现光通讯中的光放大,以此证明了掺铒光纤放大器(EDFA)的可行性。由于当时使用的是单包层光纤,纤芯直径十分细小,只有几微米,因此,泵浦光的耦合效率限制

1964 年,美国的 Snitzer 等人首次提出了光纤激光器和放大器的构想,但受当时光纤拉制工艺、光纤损耗、半导体激光器技术等方面的限制,在其后 20 多年里光纤激光器没有得到实质性的发展。1987年英国南安普顿大学及美国贝尔实验室用掺铒单模光纤实现光通讯中的光放大,以此证明了掺铒光纤放大器(EDFA)的可行性。由于当时使用的是单包层光纤,纤芯直径十分细小,只有几微米,因此,泵浦光的耦合效率限制了激光器的输出功率。1988 年,Snitzer 等人提出了基于双包层光纤的包层泵浦技术,相较于传统光纤,双包层光纤多了一个可以传光的内包层,内包层的横向尺寸和数值孔径都比纤芯大得多,从而降低了泵浦光的耦合难度,大大提升了泵浦光的耦合功率。但是初期设想的圆形内包层因为完美的对称性导致泵浦光的吸收效率较低。1993 年,矩形内包层的双包层光纤出现,此后,正方形、D 形、梅花形等形状的内包层也相继出现,实验表明,这些内包层形状的光纤相对于圆形内包层形状的光纤对泵浦光的吸收效率有了很大提高。1994 年,由 H. M. Pask 等人首先在掺镱石英光纤中实现了包层泵浦技术,实验中得到了波长为 1042nm,功率为0.5W 的最大激光输出,斜率效率达到 80%。正是由于掺镱双包层光纤激光器具有更高的斜率效率,以及 Yb3 具有简单的能级结构、较宽的吸收带和较宽的发射截面,人们的注意力逐渐转向掺镱双包层光纤激光器的研究。此后,光纤激光器得到了迅猛发展,输出功率不断飙升。1997 年,Polaroid 报道了输出功率35.5W,波长 1100nm 的双包层激光器。1999 年,SDL(Spectra Diode Laser)首次实现了连续功率达百瓦级的掺镱双包层光纤激光器,输出功率为 110W。

2003 年 Limpert 等报道了输出功率 500W、M2为 1.1 的掺镱双包层光纤激光器,而 Liu 等人将输出功率提高到了 810W。2004 年,南安普顿大学的 Y. Jeong 等人采用双端泵浦方式实现了连续激光输出功率为 1.36kW 的掺镱大芯径单模光纤激光器。从 2005 到 2009 年,美国 IPG的单模光纤激光器依次突破了 2kW和 3kW,更实现了从 6kW 至 10kW 的跨越。 尽管光纤激光器发展迅猛,但是受热损伤、非线性效应、光纤端面损伤、热透镜效应等因素的制约,单根单模光纤激光器的输出功率不可能无限提升。

美国利弗莫尔实验室(LLNL)J.W.Dawson 等人综合考虑热效应、非线性光学、输出端限制等物理因素的影响,对光纤激光输出功率极限进行了较为详细的分析。计算结果表明,单模宽谱光纤激光的输出功率极限约为 36.6 kW,单频(一般谱宽小于或等于与布里渊增益的线宽量级,即小于 100MHz)光纤激光的输出功 率极限约为 1.86 kW。级联泵浦方案被认为是进一步提升光纤激光器输出功率的有效途径。朱家健等人分析了级联泵浦条件下,掺镱光纤的输出功率极限,计算结果表明利用 1018nm 泵浦的掺镱光纤激光器单频单横模输出功率极限为70.7kW。

从上述分析可知,尽管目前单根单模光纤激光器输出功率已经突破万瓦级,并且存在一定的提升空间,但距离数百千瓦级高功率输出还有着量级上的差距。 增大光纤纤芯直径可以大幅提升光纤输出功率,如果将多根中等功率的单模光纤激光通过全光纤的合束器合成到一根多模光纤中,就可以获得大功率激光输出。IPG 已经实现了 50kW 的多模激光输出,这种方法要实现百千瓦的输出功率也是可行的。 光纤激光器具有的独特优势以及功率的不断提升使其应用范围不断扩展,目前在工业加工、生物医疗、国防军事等领域得到了广泛的应用。

在工业领域,激光焊接由于热影响小、密封性好、适合在真空等特殊环境下加工,在航天航空器件中得到广泛应用。时至今日,随着激光功率的提高,现在焊接十几毫米厚的钢板也比较容易。用激光焊接技术取代传统的铆钉进行铝合金飞机机身的制造,从而减轻飞机机身重量近 20%,提高强度近 20%,如今德国宇航 MBB,空中客车都应用了此项技术。2010 年,IPG 独一无二的波长为 1070nm 的 20kW 连续商用光纤激光器,在光纤芯径为 200µm,聚焦光斑为 420µm 的条件下,焊接厚度为 1 英寸的 304 不锈钢,速度能够达到 0.85m/min,焊接 0.75 英寸的钢板能达到 2m/min。2010 年,日本获得日本海事协会及英国劳氏船级社的许可,将 10kW 光纤激光-电弧复合焊接第一次运用于船舶制造。2011 年,一套搭载有 IPG 20KW 光纤激光器成功应用于通用电气的高功率激光电弧复合焊接(HLAW)系统。此系统将激光焊接和电弧焊接组合在一起,能够以速度大于 6feet/min 的单一过程,焊接超过 0.5 英寸厚的钢板,并且能够获得比传统多道工序焊接更好的焊接质量,这将有望彻底改变未来工业产品的生产方式。此外,在激光打标、激光切割、激光美容等方面,光纤激光器以其特有的优势正在逐渐取代传统激光器。自 2009 年以来,光纤激光器就已经被销往六大主要行业,其中包括电子、食品设备和办公用品。2011 年,该六大行业的总销售额达 4.86 亿美元,较 2010 年增长 50%。

在国防领域,光纤激光器在体积、效率和光束质量等方面的优势,在空间激光武器中有广泛的应用前景。2004 年美国 SPATA 的“宙斯”激光扫雷系统采用了 IPG 的 2kW 多模光纤激光器,该系统在阿富汗地区成功执行了扫雷任务。2006 年雷神构建的激光区域防护系统(Laser Area Defense Syetem)在战术时间内成功引爆了超过 500m 处的 60mm 迫击炮弹。2010 年,美国海军的激光密集阵(Laser Phalanx)光纤激光器演示系统成功击落 4 架从海上飞来的无人机,此系统是美国空军实验室用 6 根 5.5kW 的 IPG光纤激光器集成,合成输出功率达 32kW,这是美国在现有舰载防空平台上首次试验激光武器。此外,美国陆军还把密集阵系统移植为地面密集阵系统,并赋予其百夫长(Centurion)名称,还在百夫长平台上研发光纤激光武器系统——激光百夫长。

高能光纤激光广阔的市场前景吸引了世界上众多的科研机构和企业。国外光纤激光器的主要生产厂家有 IPG、SPI、JDSU、Coherent、ROFIN 和 TRUMPF等,英国 Southampton 大学、Bath 大学、美国 Michigan 大学、德国 Jena 大学等也不断推陈出新,使得高功率光纤激光器从实验室快速商品化走向市场。

美国的 IPG已经推出了产品化的单模万瓦光纤激光器和 50kW 的多模连续光纤激光器。而 ROFIN 旗下的 Nufern也推出了 kW 量级单模光纤放大器系统。国内的武汉锐科、中科梅曼、创鑫激光和国科世纪等都进入光纤激光器领域。2012 年,西安中科梅曼成功推出了国内首台拥有自主知识产权的 kW 工业级光纤激光器。清华大学、国防科技大学、中科院上海光机所、西安光机所、中国兵器装备研究院等多家科研单位也实现了千瓦级光纤激光输出。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读