基于传统双包层光纤的光纤合束器以(6 1)×1 光纤合束器制作为例, 分析利用传统双包层光纤制作光纤合束器的工艺。(6 1)×1 光纤合束器由6 根多模光纤和1 根单模光纤熔融拉锥后和一根双包层光纤熔接在一起构成, 可称之为多模-单模-双包层光纤合束器。双包层光纤, 它由纤芯、内包层和外包层组成, 纤芯的模场直径为2ω1 , 内包层的直径为d1 , 数值孔径(NA)为DNA1 ;所示为单模光纤, 其模场直径近似于2ω1 , 包层直径为d2 , 其中d2 (3)把预拉伸后的多模光纤均匀排列在单模光纤的周围成为光纤束, 用特制的夹具将其两端固定,将光纤束放在约1 000 ℃的火焰下加热, 同时夹具围绕单模光纤纤芯方向旋转, 使夹具间的光纤束受热均匀, 并熔融。 (4)在光纤束横截面直径为d5 处切割, 形成光滑的切面, d5 约等于双包层光纤的内包层直径 (5)将切割后的光纤束与双包层光纤熔接在一起。值得注意的是, 在熔接时, 光纤束中单模光纤的纤芯与双包层光纤的纤芯必须对准。根据需要, 也可以在单模光纤的周围排列多层多模光纤,排列的多模光纤越多, 预拉伸时, 多模光纤末端的直径d4 就要越小。 另外, 以上所提到的多模-单模-双包层光纤合束器可以做成多模-多模-多模光纤合束器, 即将光纤束中间的单模光纤换成多模光纤, 工艺步骤同上。然而, 当多模光纤束输出端直径和双包层光纤内包层直径完全相匹配时, 输出光纤数值孔径却未被光完全填满, 且在合束器熔接处的光功率分布也不均匀。这是由于光纤束围绕一根中心光纤排列, 锥体中的一些光与输出光纤的纤芯方向成一角度, 所以光功率分布曲线呈四周高, 中间低, 且输出光纤中的数值孔径没有被光完全填满。 通过将光纤束特定部位拉伸, 形成一个直径为d0 的束腰, 使从多模光纤传来的光在束腰处均匀分布, 充分地注入熔接处的数值孔径, 可以显著提高耦合效率。束腰后面是一个均匀增大的反向锥体, 一直到输出光纤。在输出光纤处的光功率分布, 是完全充满输出光纤的。