造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

FTTH宽带光纤接入无源光网络

2022/07/15105 作者:佚名
导读:FTTH宽带光纤接入介绍 无源光网络是一种纯介质网络,其主要特点是在接入网中去掉了有源设备,从而避免了电磁干扰和雷电影响,减少了线路和外部设备的故障率,简化了供电配置和网管复杂性,降低了运维成本。其次,PON的业务透明性较好,带宽宽,可适用于任何制式和速率的信号,能比较经济地支持模拟广播电视业务,具备三重业务功能(triple-play)。第三,其局端设备和光纤(从馈线段一直到引入线)由用户共享,

FTTH宽带光纤接入介绍

无源光网络是一种纯介质网络,其主要特点是在接入网中去掉了有源设备,从而避免了电磁干扰和雷电影响,减少了线路和外部设备的故障率,简化了供电配置和网管复杂性,降低了运维成本。其次,PON的业务透明性较好,带宽宽,可适用于任何制式和速率的信号,能比较经济地支持模拟广播电视业务,具备三重业务功能(triple-play)。第三,其局端设备和光纤(从馈线段一直到引入线)由用户共享,因而光纤线路长度和收发设备数量较少,相应成本较其它点到点通信方式要低,土建成本也可明显降低。特别是随着光纤向用户日益推进,其综合优势越来越明显。PON的每用户成本随着分享OLT的用户数量的增加而迅速下降,因而最适合于分散的小企业和居民用户,特别是那些用户区域较分散,而每一区域用户又相对集中的小面积密集用户地区,尤其是新建区域。最后,无源光网络的标准化程度好,基本分为ITUFSAN(全业务接入网络)和IEEE两大类,均可提供独立可行的单一兼容解决方案。因而,多数美国大型电信公司倾向于选择PON,而不是光以太网技术。

PON的主要缺点是一次性投入成本较高,因为局端光线路终端(OLT)很贵,光纤和分路器等无源基础设施又必须一次到位,这样当用户数较少或用户分布超过某一限定距离时,每用户的成本很高,会产生大量沉淀成本。另外,其树型分支拓扑结构使用户不具备保护功能或保护功能成本较高,影响了大规模发展。

从网络结构分析,无论哪种PON都可以有两种不同的结构,即集中式和分布式,前者在局端OLT和业务灵活点(FP)之间只有一根光纤相连,分路器集中放置在FP处(即传统的交接箱处),从分路器到用户光网络终端之间有一根专用光纤相连。而分布式结构在灵活点处与配线点(DP)处都放置分路器,形成两级分路。分析表明分布式结构在用户普及率接近100%的区域应用时具有成本优势,但是实际情况多半不是这样,特别是对于用户普及率不高的情况,集中式结构具有明显的成本优势,其成本可以随着实际用户数的增长而增长,不存在分布式结构的较大初期沉淀成本问题,而且也不会随着技术的进步(如GPON的出现和应用)而需要重新部署。

无源光网络技术的一个重要趋势是提供多种语音处理方式,既可以在局端采用V5接口与PSTN相连,提供传统PSTN语音业务,又可以在局端内置控制模块,支持H.248/H.323协议,灵活适应以H.248协议为基础的软交换VoIP网络或以H.323协议为基础的传统VoIP网络,其主要发展趋势则是着重支持软交换网。

FTTH宽带光纤接入APON和BPON

早期的窄带无源光网络是基于TDM的,性能价格比不好,已经自然消亡。ATM化的无源光网络(APON/BPON)可以利用ATM的集中和统计复用,再结合无源分路器对光纤和光线路终端的共享作用,使性能价格比大大改进,在美国和日本等国已经敷设了约150万线。

然而,APON/BPON的业务适配提供很复杂,业务提供能力有限,数据传送速率和效率不高,成本较高,其市场前景由于ATM的衰落而黯淡。最后,从业务发展趋势看,APON的可用带宽仍然不够。以FTTC为例,尽管典型主干下行速率可达622Mbit/s,但分路后,实际可分到每个用户的带宽将大大减小。按32路计算,每一个分支的可用带宽仅剩19.5Mbit/s,再按10个用户共享,则每个用户仅能分得约2Mbit/s的带宽而已。显然,这样的性能价格比是无法满足网络和业务的发展需要的。

FTTH宽带光纤接入EPON

随着IP的崛起和发展,有人提出了EPON的概念,即在与APON类似的结构和G.983的基础上,设法保留其精华部分——物理层PON,而以以太网代替ATM作为链路层协议,构成一个可以提供更大带宽、更低成本和更强业务能力的新的结合体——EPON。这一思想在以太网界获得到了积极响应,在IEEE802.3ah的旗帜下已经形成了EPON标准。在日本为了与以前基于100Mbit/s的非标准EPON区别,将其称为GEPON。鉴于基于100Mbit/s的非标准EPON已经消亡,EPON实际即指GEPON,不再专门区分。

EPON主要基于IEEE802.3ah标准,与传统点到点以太网主要不同之处在于采用点到多点通信方式。其下行方向工作于TDM方式,数据流以变长以太帧方式广播到ONU,每个ONU根据以太帧的MAC地址,决定取舍。上行方向工作于TDMA方式,来自不同时隙的ONU数据流汇聚到公共光纤设施和OLT。此外,传统以太网工作于连续光传输模式,在收发两个方向都是连续的比特流,因此收端的定时和判决容易实现。而EPON的上行比特流是轮流发送的突发数据包,OLT的接收定时恢复、判决门限设置、测距和延时补偿比较复杂。

从EPON的结构上看,其关键优点是极大地简化了传统的多层重叠网结构,主要特点有:

●消除了ATM和SDH层,从而降低了初始成本和运行成本;

●下行业务速率可达1Gbit/s,允许支持更多用户和更高带宽;

●硬件简单,无须室外电子设备,使安装部署工作得以简化;

●可以大量采用以太网技术成熟的芯片,实现较简单,成本低;

●改进了电路的灵活指配和业务的提供和重配置能力;

●提供了多层安全机制,诸如VLAN、闭合用户群和支持VPN等。

IEEE802.3ah规范的EPON技术的上下行波长是1310nm和1490nm,上下行速率均为1.25Gbit/s,传输距离是10/20km,分路比是32/16,主要业务是数据和语音,增加一个1550nm电视广播波长后,成为语音、数据和电视三合一的所谓三重业务捆绑服务。对于传送单一以太网业务而言,EPON是一种很好的解决方案。

EPON的主要缺点是由于IEEE802.3ah只规定了MAC层和物理层,MAC层以上的标准靠制造商自行开发,因而带来灵活性的同时也造成了设备互操作性差的缺点。其次,EPON的总效率较低,主要是由于采用8B/10B的线路编码,引入20%的带宽损失,再加上其它的额外开销,可用负荷仅50%左右,而APON和GPON都采用NRZ扰码为线路码,没有带宽损失。GPON的GFP每帧封装4-65535byte,远大于以太网的帧负荷46-1500byte,平均开销少,再加上承载层效率、传输汇聚层效率、业务适配效率等原因,使EPON总的传输效率较低,大约仅为GPON的一半。第三,由于EPON开始主要是以太网设备制造商驱动的标准,因而没有充分考虑网络运营商的运营需要,管理功能不够丰富,但是比普通以太网有明显改进,可以提供远端故障指示、远端环回控制和链路监视等基本管理功能,也能满足基本管理功能。最后,EPON的设计没有考虑直接支持以太网以外的业务,因而对于主张多业务支持能力的传统运营商来说是一个重要缺憾。 FTTH宽带光纤接入-

FTTH宽带光纤接入GPON

2001年,在IEEE积极制定EPON标准的同时,FSAN组织开始发起制定速率超过1Gbit/s的PON网络标准——吉比特以太网无源光网络(GPON),随后,ITU-T也介入了这一新标准的制定工作并于2003年1月通过两个有关GPON的新标准——G.984.1和G.984.2。

按照这一最新标准的规定,GPON可以提供1.244Gbit/s和2.488Gbit/s的下行速率和ITU规定的多种标准上行速率,即可以灵活地提供对称和非对称速率。传输距离至少达20km,系统分路比可以为1:16、1:32、1:64乃至1:128,而EPON只提供1.25Gbit/s对称速率,分路比最多为1:32。即GPON在速率、速率灵活性、传输距离和分路比方面有优势。其次,GPON采用了两种适配方式,除了传统的ATM外,还在传输汇聚层采用了一个全新的基于SDH的标准通用组帧程序(GFP),这是一种可以透明、高效地将各种数据信号封装进现有SDH网络的通用标准信号适配映射技术,可以适应任何用户信号格式和任何传输网络制式,无需附加ATM或IP封装层,封装效率高、提供业务灵活,而APON/BPON和EPON对每种特定业务都需要提供特定的适配方法。第三,由于GPON采用GFP映射,其传输汇聚层本质上是同步的,还使用标准SDH的125μs帧,使GPON可以支持端到端的定时和其它准同步业务,特别是可以直接高质量、灵活地支持实时的TDM语音业务,延时和抖动性能很好。而EPON在承载TDM业务方面没有具体规定,导致厂家可以采用不同方法来承载,包括一层、二层和三层均可以,互操作性较差,性能难以确保。第四,GPON在网管方面具有丰富的功能,包括带宽授权分配、动态带宽分配、链路监测、保护倒换、密钥交换和各种告警功能等,比EPON考虑周到。不过,EPON在网管功能上比普通以太网有了明显改进,可以提供远端故障指示、远端环回控制和链路监视等基本管理功能,也能满足基本管理功能。第五,在QoS方面,GPON可以通过使用指针调整ONU的授权带宽和授权周期来保证业务的带宽和延时要求。而EPON主要采用优先级队列结合DBA算法来保证带宽和延时,也能基本满足不同业务的QoS要求。

从技术角度,GPON是BPON的继承和发展。GPON继承了BPON的很多基本特点,例如两者都使用同样的OLT核心技术,包括ONU的激活和测距等,使用同样的物理光纤设施和光功率预算值,同样的管理软件栈等。另一方面,GPON采用了一些最新的技术成果,除了最重要的GFP封装技术外,还包括前向纠错等新技术。

从提供的业务看,GPON不仅可以提供10/100Mbit/s、1Gbit/s的业务,而且可以提供VLAN业务和语音业务,事实上可以适应任何现有业务和未来新业务的适配要求。总的来看,GPON不是制造商驱动的技术标准,而是一种运营商驱动的标准,因此具有更周到的运营利益考虑,速率更高,速率灵活性更大;具有通用的映射格式,可适应任何新老业务;具有丰富的OAM&P功能;对各种业务均有很高的传输效率,即便对于TDM业务也能灵活高效地传送。可以帮助运营商完成从传统TDM语音电路向全IP网络的平滑过渡。

就成本分析而言,PON的光模块成本大约为设备成本的20%-30%,主要成本是各种电接口和协议处理转换等,而这方面GPON和BPON要比EPON复杂很多。其次,就光模块而言,由于GPON要满足很高的突发同步指标,对于模块的驱动电路和前后放大器芯片要求很高,还要满足较高的功率预算,只能采用分布反馈激光器(DFB)发送机和雪崩光电二极管(APD)接收机,其成本要高于EPON模块的法布里-珀罗腔(FP)发送机和光电二极管(PIN)接收机,成品率也较低,因此整个光模块成本较高。再加上EPON已经进入量产阶段,而GPON尚未进入大规模量产阶段,导致EPON在成本上有明显优势。

就传输效率而言,则GPON无论在扰码效率、传输汇聚层效率、承载协议效率和业务适配效率方面都是最高的,因此其总效率最高。例如假设TDM业务占10%,数据业务占90%,则GPON的总效率为94%,而APON和EPON分别为72%和49%。

GPON的主要缺点是尽管ONU只需要支持ATM和GFP适配中的一种,但是OLT必须同时支持两种,即必须保留有复杂的ATM层功能,再加上光模块的技术难度较高,使设备成本较高。另外,GPON成熟度不如EPON,尚无专业芯片厂商推出真正商用的GPON核心芯片和光模块,而EPON已经有多家提供商,核心芯片已经发展到第三代单片系统(SoC)阶段,光模块的成本也已经降到接近普通吉比特以太网的水平。

总的来看,在产量不太大的情况下,GPON和BPON的设备成本要比EPON高很多,随着技术的进步和产量的大规模提高,成本差异将会逐渐减小,总成本将可能最终取决于产量大小,即市场的选择。

GPON和EPON面临的共同挑战有:怎样才能在Ethernet/GFP上有效承载TDM业务并能提供电信级的服务质量;其次,由于GPON和EPON是点对多点的星形或树形网络,需要通过一个1 1并经过不同路由的光网络来实现电信级的保护恢复,网络成本将非常高;第三,GPON和EPON设备成本主要受限于突发光发送/接收模块以及核心的控制模块/芯片,这些模块要么尚未成熟,要么是价格太贵还难以适应市场需要;第四,GPON和EPON的一次性投入成本较高,不太适合逐步投资扩容的传统电信建设模式,最适合完全新建或改建的密集用户区域。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读