暗放电主要是非自持放电(但自持放电的某些区域中有暗放电存在)。关于暗放电的理论是英国物理学家J.S.汤生于1903年提出的,故这种放电也称为汤生放电。
物理描述
汤生理论的物理描述是:设外界催离素在阴极表面辐照出一个电子,这个电子向阳极方向飞行,并与分子频繁碰撞,其中一些碰撞可能导致分子的电离,得到一个正离子和一个电子。新电子和原有电子一起,在电场加速下继续前进,又能引起分子的电离,电子数目便雪崩式地增长。这称为电子繁流。
放电中产生的正离子最后都抵达阴极。正离子轰击阴极表面时,使阴极产生电子发射;这种离子轰击产生的次级电子发射,称为r过程。r过程使放电出现新的特点,这就是:r过程产生的次级电子也能参加繁流。如果同一时间内,由于r过程产生的电子数,恰好等于飞抵阳极的电子数,放电就能自行维持而不依赖于外界电离源,这时就转化为自持放电。
气体的着火电压取决于一系列因素。1889年,L.C.帕邢发现,对于平行平板电极系统,在其他条件相同时,着火电压是气体压力p与电极距离d乘积的函数,通称为巴邢定律。图3表示一些气体的着火电压与pd值的关系。由图可见,着火电压有一最低值。在最低值右边(右支),着火电压随pd的增大而提高,在其左边(左支),则随pd的减小而提高。在高电压设备中,各电极间的距离须足够大(即d值应足够大),有时还充以高压强(即取大的p值)的绝缘气体,以提高设备的耐压,就是利用右支的特性。反之,在真空电容器一类器件中,常将其内部抽至良好的真空(即达到小的p值),以提高其耐压,这是利用左支的特性。
简介
低压气体在着火之后一般都产生辉光放电。若电极是安装在玻璃管内,在气体压力约为 100帕且所加电压适中时,放电就呈现出明暗相间的 8个区域。
①阿斯顿暗区:它是阴极前面的很薄的一层暗区,是F.W.阿斯顿于1968年在实验中发现的。在本区中,电子刚刚离开阴极,飞行距离尚短,从电场得到的能量不足以激发气体原子,因此没有发光。
②阴极辉区:紧接于阿斯顿暗区,由于电子通过阿斯顿暗区后已具有足以激发原子的能量,在本区造成激发而形成的区域,当激发态原子恢复为基态时就发光。
③阴极暗区:又称克鲁克斯暗区。抵达本区域的电子,能量较高,有利于电离而不利于激发,因此发光微弱。
④负辉区:紧邻阴极暗区,且与阴极暗区有明显的分界。在分界线上发光最强,后逐渐变弱,并转入暗区,即后述的法拉第暗区。负辉区中的电子能量较为分散,既富于低能量的电子也富于高能量的电子。
⑤法拉第暗区:负辉区到正柱区的过渡区域。在本区中,电子能量很低,不发生激发或电离,因此是暗区。
⑥正辉柱区:与法拉第暗区有明显的边界,是电子在法拉第暗区中受到加速,具备了激发和电离的能力后在本区中激发电离原子形成的,因发光明亮故又称正辉柱。正辉柱区中电子、离子浓度很高(约1015~1016个/m3),且两者的浓度相等,因此称为等离子体。正柱区具有良好的导电性能;但它对放电的自持来说,不是必要的区域。在短的放电管中,正柱区甚至消失;在长的放电管中,它几乎可以充满整个管子。正柱区中轴向电场强度很小,因此迁移运动很弱,扩散运动(即乱向运动)占优势。
⑦阳极辉区和阳极暗区:只有在阳极支取的电流大于等离子区能正常提供的电流时才出现。它们在放电中不是典型的区域。 辉光放电各区域中最早被利用的是正柱区。正柱区的发光和长度可无限延伸的性质被利用于制作霓虹灯。作为指示用的氖管、数字显示管,以及一些保护用的放电管,也是利用辉光放电。在气体激光器中,毛细管放电的正柱区是获得激光的基本条件。近代微电子技术中的等离子体涂覆、等离子体刻蚀,也是利用辉光放电过程。从正柱区的研究发展起来的等离子体物理,对核聚变、等离子体推进、电磁流体发电等尖端科学技术有重要意义。辉光放电中的负辉区,由于电子能量分布比正柱区的为宽,如今被成功地用于制作白光激光器。
辉光放电中,如果整个阴极已布满辉光,再增大支取的电流,则出现异常辉光放电(图1中 BE段)。此时阴极位降很大,且位降区的宽度减小。阴极位降大和电流密度大,会导致阴极材料的溅射。在放电器件中,溅射的吸气作用降低器件内气体压强并改变其气体成分,而溅射形成的导电膜则降低电极间绝缘。阴极溅射现象也可用作材料涂覆的一种手段,这就是溅射镀膜。
如将辉光放电的限流电阻减小,则放电电流增大,并转入电弧放电(图1中CDF段)。电弧放电的特点是电流密度大而极间电压低,其自持依赖于新的电子发射机制,即热发射和冷发射。热发射是因正离子轰击阴极出现局部高温而产生的;冷发射则是因阴极表面存在局部强电场而引起的。前者称为热电子电弧,后者称为冷阴极电弧。作为强光源的碳极电弧就是热电子电弧;电力工业用的汞弧整流管则利用冷阴极电弧。 电弧放电的一个重要特点是阴极上有阴极辉点。热电子电弧的辉点一般是固定不动的;冷阴极电弧如汞弧整流管液汞表面上的辉点是跳跃移动的。阴极辉点是电子发射的来源,其电流密度高达数百至数千安/厘米2。
电弧放电的伏安特性随电极材料、气体种类、压力而异。大气中的碳极电弧呈现出典型的负阻特性,因此外电路中必须串有限流电阻,以稳定电流。
电弧放电产生强烈的辐射,其强度随气体压力和电流密度而增大。放电区中温度最高点在一个大气压下约为4200K,在10个大气压下为6520K,在几十或几百大气压下达10000K。
碳极电弧是最早的强光光源。各种高气压放电灯如高气压汞灯、氙灯、钠灯,是在管泡内进行电弧放电的光源。电弧焊接、电弧切割在工业上有广泛应用;电弧的高温可作为电炉的热源。
在气压较高而极间距离大时,不易得到自持放电。但是,如果一个或两个电极很尖(即曲率半径很小),形成很强的局部电场,则能导致气体的强烈激发和电离,并出现发光的薄层,称电晕层;电晕层外的区域,电场不足以激发和电离,呈黑暗状,称电晕外区。这种放电称电晕放电,是一种不完全击穿的自持放电。负离子发生器就是电晕放电的一种应用。
这是在电源电压较高,足以击穿气体,但电源功率不够大,不能维持持续放电时产生的一种放电。它仍然是一种自持放电,但瞬即熄灭,待电源电压恢复后,又重新放电。放电时电极间有丝状火花跳过电极空间,其路程则是随机的。自然界中的雷电,是一种大范围的火花放电,但在火花放电之前大多先出现电晕放电。
火花放电的过程比汤生放电还要迅速。关于这种放电的理论,较为成功的是条带理论。这种理论认为:在强电场作用下,由外界催离素所产生的某一个电子,向阳极运动时将引起强烈的电离及激发,并形成电子繁流。这种单个电子形成的繁流称为负条带。形成负条带的同时,出现强烈的短波辐射,在空间引起光电离;光电离产生的光电子,又能发展成一些较小的负条带。当条带较多时,便汇成一个强大的负条带,迅速向阳极飞去。详细的分析表明,还存在从阳极飞往阴极的条带,即正条带。正负条带造成两电极间的导电通路,使强大的电流脉冲得以通过气体,这就是火花放电的着火。
火花放电使电极材料受到严重的烧蚀,利用这一现象制成的电火花加工设备,能对金属进行切割、抛光等加工。火花放电时,不仅击穿气体,还能击穿其通路上的薄片绝缘材料,电火花打孔的加工技术就是利用这一现象的。依据火花放电现象制成的触发管和火花放电器,常用于脉冲调制电路中。
通常,如果放电管电极的电极性改变,放电的方向也改变。但这仅是在频率很低的情况下才如此。如50赫市电点燃荧光灯时就是这样。但当频率提高时,放电来不及熄灭,因而呈现为稳定放电的形式:正辉柱位于两电极中间,正辉柱两边均有法拉第暗区,然后是两个负辉区紧邻两个电极。这就是高频放电。高频放电中,带电粒子来回运动,损失的速度很慢,因此无需r过程也能维持放电,故可将电极移至管壳之外,仅借助电场就可在管内引起放电。若将通有高频电流的线圈套在管外,借助交变电磁场的作用也能激起高频放电。
频率在几百兆赫至几百吉赫的高频放电,属于微波气体放电。依据微波放电原理制成的天线开关管,广泛应用在雷达工程中。高频放电离子源,是核物理、等离子体化学的重要研究工具。微波放电线光谱辐射源、连续光谱辐射源等,应用于物理学、化学的研究工作中。在近代微电子技术中,利用高频溅射的方法可避免静电荷的影响。在可控核聚变研究中,微波放电可用作初始等离子体源,微波放电还可作为介质,用以研究波的传播、转化、吸收、等离子体稳定性、扩散、紊流等过程。
在脉冲电压作用下引起的气体放电,就是脉冲放电。脉冲放电视脉冲电源的具体型式分为单脉冲放电、重复脉冲放电和高频脉冲放电等,高频脉冲放电时,通过气体的脉冲电流的曲线是变幅高频交流振荡曲线的包络线。 最简单的脉冲放电是由一电容储能电路击穿一个火花隙而得到的;放电装置则串接在火花隙中,火花隙击穿时装置中亦就得到了脉冲放电。
脉冲形成阶段
即火花隙间加上电压,气体电离及击穿并使放电充满整个装置; 维持阶段,此时电容器中的能量继续通过放电通道,放电空间出现强烈的电离和激发;
放电熄灭阶段
即随着电容器上电压的降低,放电逐渐衰弱,最后不能自持时,放电就自行熄灭。
脉冲放电时激发和电离很强烈,各种过程导致的辐射及粒子数反转现象极其丰富,可用于制造各种脉冲气体激光器。微波工程中的天线开关管、作为固体激光器光泵用的脉冲氙灯、脉冲离子源和摄影用闪光灯,都是脉冲放电的应用。