造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

相变蓄热技术的应用

2022/07/15126 作者:佚名
导读:人们对相变蓄热技术的研究虽然只有几十年的历史,但它的应用十分广泛,已成为日益受到人们重视的一种新兴技术。该技术主要有以下几个方面的应用 。 工业过程的余热利用 工业过程的余热既存在连续型余热又存在间断型余热。对于连续型余热,通常采取预热原料或空气等手段加以回收,而间断型余热因其产生过程的不连续性未被很好的利用,如有色金属工业、硅酸盐工业中的部分炉窑在生产过程中具有一定的周期性,造成余热回收困难,因

人们对相变蓄热技术的研究虽然只有几十年的历史,但它的应用十分广泛,已成为日益受到人们重视的一种新兴技术。该技术主要有以下几个方面的应用 。

工业过程的余热利用

工业过程的余热既存在连续型余热又存在间断型余热。对于连续型余热,通常采取预热原料或空气等手段加以回收,而间断型余热因其产生过程的不连续性未被很好的利用,如有色金属工业、硅酸盐工业中的部分炉窑在生产过程中具有一定的周期性,造成余热回收困难,因此,这类炉窑的热效率通常低于30%。相变蓄热突出的优点之一就是可以将生产过程中多余的热量储存起来并在需要时提供稳定的热源,它特别适合于间断性的工业加热过程或具有多台不同时工作的加热设备的场合,采用热能储存系统利用相变蓄热技术可节能15%~45%。根据加热系统工作温度和储热介质的不同,应用于工业加热的相变蓄热系统可分为蓄热换热器、蓄热室式蓄热系统和显热/潜热复合蓄热系统三种形式。蓄热换热器适用于间断性工业加热过程,是一种蓄热装臵和换热装臵合二为一的相变蓄热换热装臵。它采取管壳式或板式换热器的结构形式,换热器的一侧填充相变材料,另一侧则作为换热流体的通道。当间歇式加热设备运行时,烟气流经换热器式蓄热系统的流体通道,将热量传递到另一侧的相变介质使其发生固液相变,加热设备的余热以潜热的形式储存在相变介质中。当间歇式加热设备从新工作时,助燃空气流经蓄热系统的换热通道,与另一侧的相变材料进行换热,储存在相变材料中的热量传递到被加热流体,达到预热的目的。相变蓄热换热装臵一个特点是可以制造成独立的设备,作为工业加热设备的余热利用设备使用时,并不需要改造加热设备本身,只要在设备的管路上进行改造就可以方便地使用。蓄热室式蓄热系统在工业加热设备的余热利用系统中,传统的蓄热器通常采用耐火材料作为吸收余热的蓄热材料,由于热量的吸收仅仅是依靠耐火材料的显热热容变化,这种蓄热室具有体积大、造价贵、热惯性大和输出功率逐步下降的缺点,在工业加热领域难以普及应用。相变蓄热系统是一种可以替代传统蓄热器的新型余热利用系统,它主要利用物质在固液两态变化过程中的潜热吸收和释放来实现热能的储存和输出。相变蓄热系统具有蓄热量大、体积小、热惯性小和输出稳定的特点。与常规的蓄热室相比,相变蓄热系统体积可以减小30%~50%。

太阳能热储存

太阳能是巨大的能源宝库,具有清洁无污染,取用方便的特点,特别是在一些高原地区如我国的云南、青海和西藏等地,太阳辐射强度大,而其他能源短缺,故太阳能的利用将更加普遍。但到达地球表面的太阳辐射,能量密度却很低,而且受到地理、昼夜和季节等因素的影响,以及阴晴云雨等随机因素的制约,其辐射强度也不断发生变化,具有显著的稀薄性、间断性和不稳定性。为了保持供热或供电装臵的稳定不间断的运行,就需要蓄热装臵把太阳能储存起来,在太阳能不足时再释放出来,从而满足生产和生活用能连续和稳定供应的需要。几乎所有用于采暖、供应热水、生产过程用热等的太阳能装臵都需要储存热能。即使在外层空间,在地球轨道上运行的航天器由于受到地球阴影的遮挡,对太阳能的接受也存在不连续的特点,因此空间发电系统也需要蓄热系统来维持连续稳定的运行。太阳能蓄热技术包括低温和高温两种。水是低温太阳能蓄热系统普遍使用的蓄热介质,石蜡以及无机水合盐也比较常用;高温太阳能蓄热系统大多使用高温熔融盐类、混合盐类、金属或合金作为蓄热介质。另外,能源储存技术也可以用在建筑物采暖方面。在夏天日照强烈时,利用太阳能加热器加热水并储存于地下蓄水层或隔热良好的地穴中,到冬天来临时,利用储存的热水就可取暖。1982年,美国已成功研制出一种利用NaZSO4·IOH20共熔物作为蓄热芯的太阳能建筑板,并在麻省理工学院建筑系实验楼进行了实验性应用。

太空中的应用

早在20世纪50年代,由于航天事业的发展,人造卫星等航天器的研制中常常涉及到仪器、仪表或材料的恒温控制问题。因为人造卫星在运行中,时而处于太阳照射之下,时而由于地球的遮蔽处于黑暗之中,在这两种情况下,人造卫星表面的温度相差几百度。为了保证卫星内温度恒定在特定温度下(通常为巧~35℃之间),人们研制了很多控制温度的装臵,其中一种就是利用相变蓄热材料在特定温度下的吸热与放热来控制温度的变化,使卫星正常工作。当外界温度升高,高于特定温度(如30’C)时,相变蓄热材料开始熔融,大量吸收热量;而当外部温度降低,低于特定温度时,相变材料又开始结晶,大量放出热量,从而维持内部温度恒定在30℃左右。蓄热技术在太空中的另一个应用便是空间太阳能热动力发电技术,空间热动力发电系统主要分为四大部分:聚能器、吸热/蓄热器、能量转化部分及辐射器。能量转化部分又主要包括涡轮、发电机和压气机。它的主要工作原理是:利用抛物线型的聚能器截取太阳能,并将其聚集到吸热/蓄热器的圆柱形空腔内,被吸收转换成热能其中一缈热能传递给循环工质以驱动热机发电,另一部分热量则被封装在多个小容器的相变材料内加以储存。在轨道阴影期,相变材料在相变点附近凝固释热,从当热机热源来加热循环工质,使得空间站处于阴影期时仍能连续工作发电。

吸热/蓄热器的性能参数是空间热动力发电系统的关键参数之一。美国从20世纪60年代就开始了吸热/蓄热器的研究,Garrett公司先后设计了3姗、 10.5KW的空间热动力装臵,试制了各主要部件,并对它们进行了大量的性能试验。在 1994年和1996年,分别在哥伦比亚号和奋进号航天飞机上进行了两次蓄热容器的搭载试验,以验证空间环境下相变蓄热材料的蓄放热性能以及与容器材料的相容性能,采用的相变材料分别为LIF和80.SLIF一19.SCaFZ。作为一种先进的空间太阳能供电方式,空间太阳能热动力电站对未来的空间探索有着重要意义。随着人类对太空探索不断深入,如探索月球、火星,甚至到未来的探索太阳系以外的宇宙,特别是建立永久空间站,电力需求将是一个十分紧迫的任务。另外,这种先进的空间太阳能供电方式也将为解决地面的能源危机提供很好的解决方案。美国已经提出在21世纪中叶左右研发一个 1.6GW的空间电站,再利用微波系统将电力传回地面利用。如果这一系统实现的话,将是人类能源技术的一个历史性的进步。当然要达到这一目标,还有大量的技术难题有待人类攻克。

其他方面的应用

随着研究的不断深入,相变蓄热材料的应用领域也不断地扩展。如PCMs(phase changematerials即相变材料)在建筑物采暖、保温以及被动式太阳房等领域的应用,是近年来PeMS研究领域的热点之一2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读