波分复用网络将单模光纤的可用带宽划分成多个独立的波长,每个波长是一个通道,各信道的速率在技术所能实现的范围内(如100Mbit/s~10Gbit/s)任意选择。网络中不同用户的不同业务可在不同逻辑通道上传送,这样多个信道速率的总和就构成了网络的速率,增加波分复用的信道数,就可进一步挖掘光纤的带宽资源;而多个独立非重叠信道可以同时传送不同类型的服务,这样也实现了网络综合业务的功能。一根光纤上可用的光波长为2、4、8、16、32、64,最多为132个,因此光波长数是有限的。
全光波分复用网络有两种交换方式:光路交换(Circuit-switching)和光分组交换(Packet-switching),由此形成了两种全光波分复用网络的网络形式,即光路交换WDM(波分复用)网和分组交换WDM(波分复用)网。
近几年来,全世界计算机及通信技术得到了长足的发展,由于网络构筑所依赖的以电为基本传输介质的物理层已到了其极限,使得现有的网络在多方面已不能适应需求:带宽匮乏、灵活性差、速度慢。
现有的基于时分复用方式工作的光纤网络由于受到电子器件的极限工作速率的限制,网络综合带宽难以突破10Gbit/s的量级。为充分利用光纤提供的巨大通信带宽,在网络中采用并行访问方式是必然的选择。
全光WDM网的路由选择和波长分配(RAW)是重要的应用基础性研究问题,它解决怎样通过光交叉连接或其它设备构成运载信号的光通道,并合理地分配通道所使用的波长,使有限资源能提供尽量大的通信容量。
给出一组建立全光连接(光通路)的请求,RAW问题由两部分组成:①为每个源节点寻找到达目的节点的路径;②在这些路径上分配波长。因为波长数有限,不可能在每对节点间建立光通路。RAW问题可分为动态RAW和静态RAW。动态RAW一般是考虑建立光连接的请求随机到达,静态RAW则是考虑在进行路由和波长分配前已知所有的希望建立的光连接。
在较早的研究中,假定网络中没有波长转换的光部件,这种情况下的RAW问题已有较多的研究,但是还有探讨的必要。随着光部件的发展,网络中可以采用波长变换,在某些情况下,网络性能得到改善,这方面的研究很活跃。